Effectiveness of the syndrome extraction circuit with flag qubits on IBM quantum hardware
- URL: http://arxiv.org/abs/2403.10217v2
- Date: Sat, 11 May 2024 03:12:08 GMT
- Title: Effectiveness of the syndrome extraction circuit with flag qubits on IBM quantum hardware
- Authors: Younghun Kim, Hansol Kim, Jeongsoo Kang, Wonjae Choi, Younghun Kwon,
- Abstract summary: We report the successful implementation of a syndrome extraction circuit with flag qubits on IBM quantum computers.
Even though the data qubit is not adjacent to the syndrome qubit, logical error rates diminish exponentially as the distance of the repetition code increases.
This confirms the successful implementation of the syndrome extraction circuit with flag qubits on the IBM quantum computer.
- Score: 3.658358071310729
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large-scale quantum circuits are required to exploit the advantages of quantum computers. Present-day quantum computers have become less reliable with increasing depths of quantum circuits. To overcome this limitation, quantum error-correction codes have been introduced. Although the success of quantum error correction codes has been announced in Google[1, 2] and neutral atom[3] quantum computers, there have been no reports on IBM quantum computers showing error suppression owing to its unique heavy-hexagon structure. This structure restricts connectivity, and quantum error-correction codes on IBM quantum computers require flag qubits. Here, we report the successful implementation of a syndrome extraction circuit with flag qubits on IBM quantum computers. Moreover, we demonstrate its effectiveness by considering the repetition code as a test code among the quantum error-correcting codes. Even though the data qubit is not adjacent to the syndrome qubit, logical error rates diminish exponentially as the distance of the repetition code increases from three to nine. Even when two flag qubits exist between the data and syndrome qubits, the logical error rates decrease as the distance increases similarly. This confirms the successful implementation of the syndrome extraction circuit with flag qubits on the IBM quantum computer.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Transversal CNOT gate with multi-cycle error correction [1.7359033750147501]
A scalable and programmable quantum computer holds the potential to solve computationally intensive tasks that computers cannot accomplish within a reasonable time frame, achieving quantum advantage.
The vulnerability of the current generation of quantum processors to errors poses a significant challenge towards executing complex and deep quantum circuits required for practical problems.
Our work establishes the feasibility of employing logical CNOT gates alongside error detection on a superconductor-based processor using current generation quantum hardware.
arXiv Detail & Related papers (2024-06-18T04:50:15Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Protecting Expressive Circuits with a Quantum Error Detection Code [0.0]
We develop a quantum error detection code for implementations on existing trapped-ion computers.
By encoding $k$ logical qubits into $k+2$ physical qubits, this code presents fault-tolerant state initialisation and syndrome measurement circuits.
arXiv Detail & Related papers (2022-11-12T16:46:35Z) - Quantum Entanglement with Self-stabilizing Token Ring for Fault-tolerant
Distributed Quantum Computing System [0.0]
This paper shows how to construct quantum entanglement states of n qubits based on a self-stabilizing token ring algorithm.
The entangled states can be applied to the fields of the quantum network, quantum Internet, distributed quantum computing, and quantum cloud.
arXiv Detail & Related papers (2022-09-23T01:20:36Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Quantum error correction with silicon spin qubits [0.0]
Large-scale quantum computers rely on quantum error correction to protect the fragile quantum information.
Recent advances in silicon-based qubits have enabled the implementations of high quality one and two qubit systems.
Here, we demonstrate a three-qubit phase correcting code in silicon, where an encoded three-qubit state is protected against any phase-flip error on one of the three qubits.
arXiv Detail & Related papers (2022-01-21T07:59:49Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z) - Testing a Quantum Error-Correcting Code on Various Platforms [5.0745290104790035]
We propose a simple quantum error-correcting code for the detected amplitude damping channel.
We implement the encoding, the channel, and the recovery on an optical platform, the IBM Q System, and a nuclear magnetic resonance system.
arXiv Detail & Related papers (2020-01-22T13:15:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.