論文の概要: Application of machine learning to experimental design in quantum mechanics
- arxiv url: http://arxiv.org/abs/2403.10317v1
- Date: Fri, 15 Mar 2024 14:07:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 17:01:25.275234
- Title: Application of machine learning to experimental design in quantum mechanics
- Title(参考訳): 量子力学における実験設計への機械学習の適用
- Authors: Federico Belliardo, Fabio Zoratti, Vittorio Giovannetti,
- Abstract要約: 本稿では,量子センサの精度を最適化する機械学習手法を提案する。
フレームワークはPythonパッケージのqsensoroptで実装されている。
我々は,この手法のNV中心およびフォトニック回路への応用について検討した。
- 参考スコア(独自算出の注目度): 0.5461938536945721
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent advances in machine learning hold great promise for the fields of quantum sensing and metrology. With the help of reinforcement learning, we can tame the complexity of quantum systems and solve the problem of optimal experimental design. Reinforcement learning is a powerful model-free technique that allows an agent, typically a neural network, to learn the best strategy to reach a certain goal in a completely a priori unknown environment. However, in general, we know something about the quantum system with which the agent is interacting, at least that it follows the rules of quantum mechanics. In quantum metrology, we typically have a model for the system, and only some parameters of the evolution or the initial state are unknown. We present here a general machine learning technique that can optimize the precision of quantum sensors, exploiting the knowledge we have on the system through model-aware reinforcement learning. This framework has been implemented in the Python package qsensoropt, which is able to optimize a broad class of problems found in quantum metrology and quantum parameter estimation. The agent learns an optimal adaptive strategy that, based on previous outcomes, decides the next measurements to perform. We have explored some applications of this technique to NV centers and photonic circuits. So far, we have been able to certify better results than the current state-of-the-art controls for many cases. The machine learning technique developed here can be applied in all scenarios where the quantum system is well-characterized and relatively simple and small. In these cases, we can extract every last bit of information from a quantum sensor by appropriately controlling it with a trained neural network. The qsensoropt software is available on PyPI and can be installed with pip.
- Abstract(参考訳): 機械学習の最近の進歩は、量子センシングと気象学の分野に大きな可能性を秘めている。
強化学習の助けを借りて、量子システムの複雑さを減らし、最適な実験設計の問題を解決することができる。
強化学習(Reinforcement learning)は、エージェント(典型的にはニューラルネットワーク)が、完全に未知の環境で特定の目標に到達するための最善の戦略を学ぶことができる強力なモデルレス技術である。
しかし、一般には、エージェントが相互作用している量子系について、少なくとも量子力学の規則に従うことを知っています。
量子気象学では、通常は系のモデルを持ち、進化のパラメータや初期状態は未知である。
ここでは、量子センサの精度を最適化し、モデル認識強化学習を通じてシステム上の知識を活用する、一般的な機械学習手法を提案する。
このフレームワークはPythonパッケージのqsensoroptで実装されており、量子メトロジーや量子パラメータ推定で見られる幅広い問題のクラスを最適化することができる。
エージェントは、前の結果に基づいて次の測定を行うための最適な適応戦略を学ぶ。
我々は,この手法のNV中心およびフォトニック回路への応用について検討した。
これまでのところ、多くのケースで最先端の制御よりも優れた結果を証明できた。
ここで開発された機械学習技術は、量子システムが十分にキャラクタライズされ、比較的シンプルで小さいすべてのシナリオに適用できる。
これらの場合、トレーニングされたニューラルネットワークで適切に制御することで、量子センサーから最後の全ての情報を抽出することができる。
qsensoroptソフトウェアはPyPIで利用可能で、ipでインストールできる。
関連論文リスト
- Quantum Extreme Learning of molecular potential energy surfaces and force fields [5.13730975608994]
量子ニューラルネットワークは、分子系のポテンシャルエネルギー表面と力場を学習するために用いられる。
この特定の教師付き学習ルーチンは、古典的コンピュータ上で実行される単純な線形回帰からなるリソース効率のトレーニングを可能にする。
我々は、任意の次元の分子を研究するために使用でき、NISQデバイスで即時使用するために最適化された設定をテストした。
他の教師付き学習ルーチンと比較して、提案されたセットアップは最小限の量子リソースを必要とするため、量子プラットフォーム上で直接実装することが可能である。
論文 参考訳(メタデータ) (2024-06-20T18:00:01Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Neural networks for Bayesian quantum many-body magnetometry [0.0]
絡み合った量子多体系は、個々の量子検出器のアンサンブルで達成可能な精度よりも大きいパラメータを推定できるセンサーとして使用できる。
このことは、ベイズ推論手法の適用性を妨げうる複雑さを伴っている。
量子多体センサの力学を忠実に再現するニューラルネットワークを用いて、これらの問題を回避する方法を示す。
論文 参考訳(メタデータ) (2022-12-22T22:13:49Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Generating Approximate Ground States of Molecules Using Quantum Machine
Learning [2.1286051580524523]
本稿では、生成量子機械学習モデルを用いて、ポテンシャルエネルギー表面上の任意の点における量子状態を作成することを提案する。
我々のアプローチでは、古典的なニューラルネットワークを用いて分子の核座標を変動量子回路の量子パラメータに変換する。
勾配評価は効率的であり,水素鎖,水および水酸化ベリリウムのPES上での波動関数の調製能力を示す。
論文 参考訳(メタデータ) (2022-10-11T14:45:07Z) - Learning Quantum Systems [0.0]
量子技術は、セキュアな通信、高性能コンピューティング、超精密センシングにおける画期的な応用によって、私たちの社会に革命をもたらすと約束している。
量子技術のスケールアップにおける主な特徴の1つは、量子システムの複雑さがその大きさと指数関数的にスケールすることである。
これは、量子状態の効率的なキャリブレーション、ベンチマーク、検証とその動的制御において深刻な問題を引き起こす。
論文 参考訳(メタデータ) (2022-07-01T09:47:26Z) - Hyperparameter Importance of Quantum Neural Networks Across Small
Datasets [1.1470070927586014]
量子ニューラルネットワークは、ニューラルネットワークと同じような役割を果たす。
機械学習に適した回路アーキテクチャについてはほとんど知られていない。
本研究は量子機械学習モデルを研究するための新しい手法を紹介する。
論文 参考訳(メタデータ) (2022-06-20T20:26:20Z) - Scalable approach to many-body localization via quantum data [69.3939291118954]
多体局在は、量子多体物理学の非常に難しい現象である。
計算コストの高いステップを回避できるフレキシブルニューラルネットワークベースの学習手法を提案する。
我々のアプローチは、量子多体物理学の新たな洞察を提供するために、大規模な量子実験に適用することができる。
論文 参考訳(メタデータ) (2022-02-17T19:00:09Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
グラフ型と量子系コヒーレンスの両方の要件を見つけるプロセスは自動化可能であることを示す。
この自動化は、特定のタイプの畳み込みニューラルネットワークを使用して、どのネットワークで、どのコヒーレンス要求の量子優位性が可能かを学習する。
我々の結果は、量子実験における利点の実証と、科学的研究と発見の自動化への道を開くために重要である。
論文 参考訳(メタデータ) (2020-01-15T18:36:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。