論文の概要: ViiNeuS: Volumetric Initialization for Implicit Neural Surface reconstruction of urban scenes with limited image overlap
- arxiv url: http://arxiv.org/abs/2403.10344v4
- Date: Fri, 03 Jan 2025 15:18:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-06 15:09:46.486221
- Title: ViiNeuS: Volumetric Initialization for Implicit Neural Surface reconstruction of urban scenes with limited image overlap
- Title(参考訳): ViiNeuS:画像重なりが制限された都市景観の入射ニューラルサーフェス再構築のためのボリューム初期化
- Authors: Hala Djeghim, Nathan Piasco, Moussab Bennehar, Luis Roldão, Dzmitry Tsishkou, Désiré Sidibé,
- Abstract要約: ViiNeuSは、符号付き距離場を効率よく初期化する、新しいハイブリッドな暗黙曲面学習法である。
ViiNeuSは、訓練の2倍の速さで、様々な都市景観の正確な3次元表面表現を学習できることを示す。
- 参考スコア(独自算出の注目度): 4.216707699421813
- License:
- Abstract: Neural implicit surface representation methods have recently shown impressive 3D reconstruction results. However, existing solutions struggle to reconstruct driving scenes due to their large size, highly complex nature and their limited visual observation overlap. Hence, to achieve accurate reconstructions, additional supervision data such as LiDAR, strong geometric priors, and long training times are required. To tackle such limitations, we present ViiNeuS, a new hybrid implicit surface learning method that efficiently initializes the signed distance field to reconstruct large driving scenes from 2D street view images. ViiNeuS's hybrid architecture models two separate implicit fields: one representing the volumetric density of the scene, and another one representing the signed distance to the surface. To accurately reconstruct urban outdoor driving scenarios, we introduce a novel volume-rendering strategy that relies on self-supervised probabilistic density estimation to sample points near the surface and transition progressively from volumetric to surface representation. Our solution permits a proper and fast initialization of the signed distance field without relying on any geometric prior on the scene, compared to concurrent methods. By conducting extensive experiments on four outdoor driving datasets, we show that ViiNeuS can learn an accurate and detailed 3D surface representation of various urban scene while being two times faster to train compared to previous state-of-the-art solutions.
- Abstract(参考訳): ニューラルな暗黙的表面表現法は、最近、印象的な3D再構成結果を示している。
しかし、既存のソリューションは、大きなサイズ、非常に複雑な性質、限られた視覚的観察重複のため、運転シーンの再構築に苦慮している。
したがって、正確な再構築を実現するには、LiDAR、強力な幾何学的事前、長い訓練時間などの追加の監視データが必要である。
このような制約に対処するために、サイン付き距離場を効率よく初期化して2次元ストリートビュー画像から大きな運転シーンを再構成する、新しいハイブリッドな暗黙曲面学習手法ViiNeuSを提案する。
ViiNeuSのハイブリッドアーキテクチャは、2つの異なる暗黙の場をモデル化している。
都市の屋外運転シナリオを正確に再構築するために, 表面近傍のサンプル点に自己教師付き確率密度推定を頼り, 容積から表面表現へ段階的に遷移する新しいボリュームレンダリング戦略を導入する。
提案手法は, 符号付き距離場の適切な初期化を, 同時手法と比較して, シーン上の幾何学的事前に頼らずに実現できる。
4つの屋外運転データセットについて広範な実験を行うことで、ViNeuSは従来の最先端のソリューションに比べて2倍高速で、様々な都市景観の正確な3次元表面表現を学べることを示す。
関連論文リスト
- LinPrim: Linear Primitives for Differentiable Volumetric Rendering [53.780682194322225]
線形プリミティブ-オクタヘドラとテトラヘドラ-ボスに基づく2つの新しいシーン表現を導入する。
この定式化は、ダウンストリームアプリケーションのオーバーヘッドを最小限にする、標準メッシュベースのツールと自然に一致します。
再現精度を向上するためにプリミティブを減らしながら,最先端のボリューム手法に匹敵する性能を示す。
論文 参考訳(メタデータ) (2025-01-27T18:49:38Z) - StreetSurfGS: Scalable Urban Street Surface Reconstruction with Planar-based Gaussian Splatting [85.67616000086232]
StreetSurfGSは、スケーラブルな街路景観の再構築に適したガウススプラッティングを利用するための最初の方法である。
StreetSurfGSは、平面ベースのオクツリー表現とセグメンテーショントレーニングを使用して、メモリコストを削減し、ユニークなカメラ特性に対応し、スケーラビリティを確保する。
スパースビューとマルチスケールの課題に対処するために、隣接する情報と長期情報を活用する2段階マッチング戦略を用いる。
論文 参考訳(メタデータ) (2024-10-06T04:21:59Z) - Spurfies: Sparse Surface Reconstruction using Local Geometry Priors [8.260048622127913]
我々はスパースビュー表面再構成の新しい手法であるSpurfiesを紹介した。
それは、合成データに基づいて訓練された局所幾何学的先行情報を利用するために、外観と幾何学的情報を切り離す。
提案手法をDTUデータセット上で検証し,従来技術よりも表面品質が35%向上したことを示す。
論文 参考訳(メタデータ) (2024-08-29T14:02:47Z) - Efficient Depth-Guided Urban View Synthesis [52.841803876653465]
高速フィードフォワード推論とシーンごとのファインチューニングのための効率的な深層誘導型都市ビュー合成(EDUS)を提案する。
EDUSは、粗い入力画像から一般化可能な都市ビュー合成を可能にするためのガイダンスとして、ノイズの多い幾何学的先行情報を利用する。
その結果,EDUSは高速なテスト時間最適化と組み合わせることで,スパース・ビュー・セッティングにおける最先端性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-07-17T08:16:25Z) - Sat2Scene: 3D Urban Scene Generation from Satellite Images with Diffusion [77.34078223594686]
本稿では,3次元スパース表現に拡散モデルを導入し,それらをニューラルレンダリング技術と組み合わせることで,直接3次元シーン生成のための新しいアーキテクチャを提案する。
具体的には、まず3次元拡散モデルを用いて、所定の幾何学の点レベルのテクスチャ色を生成し、次にフィードフォワード方式でシーン表現に変換する。
2つの都市規模データセットを用いた実験により,衛星画像から写真リアルなストリートビュー画像シーケンスとクロスビュー都市シーンを生成する能力を示した。
論文 参考訳(メタデータ) (2024-01-19T16:15:37Z) - NeuSD: Surface Completion with Multi-View Text-to-Image Diffusion [56.98287481620215]
本稿では,対象物の一部のみを捉えた複数の画像から3次元表面再構成を行う手法を提案する。
提案手法は, 表面の可視部分の再構成に神経放射場を用いた表面再構成法と, SDS (Score Distillation Sampling) 方式で事前学習した2次元拡散モデルを用いて, 可観測領域の形状を再現する手法である。
論文 参考訳(メタデータ) (2023-12-07T19:30:55Z) - Improving Neural Indoor Surface Reconstruction with Mask-Guided Adaptive
Consistency Constraints [0.6749750044497732]
本稿では、ビュー依存色とビュー非依存色を分離する2段階のトレーニングプロセスを提案し、さらに2つの新しい一貫性制約を活用して、余分な事前処理を必要とせず、詳細な再構成性能を向上させる。
合成および実世界のデータセットの実験は、事前推定誤差から干渉を減らす能力を示している。
論文 参考訳(メタデータ) (2023-09-18T13:05:23Z) - StreetSurf: Extending Multi-view Implicit Surface Reconstruction to
Street Views [6.35910814268525]
我々はStreetSurfと呼ばれる新しい多視点暗黙的表面再構成手法を提案する。
これは、LiDARデータを必要とせずに、広く使われている自動運転データセットのストリートビューイメージに容易に適用できる。
トレーニング時間1~2時間以内の幾何学的, 外観的, 芸術的復元の質を達成できた。
論文 参考訳(メタデータ) (2023-06-08T07:19:27Z) - DiViNeT: 3D Reconstruction from Disparate Views via Neural Template
Regularization [7.488962492863031]
本稿では3つの異なるRGB画像を入力として用いたボリュームレンダリングに基づくニューラルサーフェス再構成手法を提案する。
我々のキーとなる考え方は再建を規則化することであり、これは深刻な問題であり、スパースビューの間に大きなギャップを埋めることである。
提案手法は, 従来の手法の中でも, 疎外な視点で, 最高の復元品質を達成できる。
論文 参考訳(メタデータ) (2023-06-07T18:05:14Z) - Recovering Fine Details for Neural Implicit Surface Reconstruction [3.9702081347126943]
そこで我々はD-NeuSを提案する。D-NeuSは、微細な幾何学的詳細を復元できるボリュームレンダリング型ニューラル暗示表面再構成法である。
我々は,SDFゼロクロスの補間により表面点に多視点の特徴的整合性を付与する。
本手法は,高精度な表面を細部で再構成し,その性能を向上する。
論文 参考訳(メタデータ) (2022-11-21T10:06:09Z) - Unbiased 4D: Monocular 4D Reconstruction with a Neural Deformation Model [76.64071133839862]
モノクロRGBビデオから一般的なデフォーミングシーンをキャプチャすることは、多くのコンピュータグラフィックスや視覚アプリケーションにとって不可欠である。
提案手法であるUb4Dは、大きな変形を処理し、閉塞領域での形状補完を行い、可変ボリュームレンダリングを用いて、単眼のRGBビデオを直接操作することができる。
我々の新しいデータセットの結果は公開され、表面の復元精度と大きな変形に対する堅牢性の観点から、技術の現状が明らかに改善されていることを実証する。
論文 参考訳(メタデータ) (2022-06-16T17:59:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。