Entanglement patterns of quantum chaotic Hamiltonians with a scalar U(1) charge
- URL: http://arxiv.org/abs/2403.10600v2
- Date: Sat, 02 Aug 2025 22:09:25 GMT
- Title: Entanglement patterns of quantum chaotic Hamiltonians with a scalar U(1) charge
- Authors: Christopher M. Langlett, Joaquin F. Rodriguez-Nieva,
- Abstract summary: We show that we can accurately describe the statistical behavior of eigenstate ensembles in many-body Hamiltonians.<n>Our work highlights the important role played by spatial locality in describing universal features beyond the volume-law behavior.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Our current understanding of quantum chaos in many-body quantum systems hinges on the random matrix theory(RMT) behavior of eigenstates and their energy level statistics. Although RMT has been remarkably successful in describing `coarse' features of many-body quantum Hamiltonians in chaotic regimes, such as the Wigner-Dyson level spacing statistics or the volume-law behavior of eigenstate entanglement entropy, it remains a challenge to describe their `finer' features, particularly those arising from spatial locality. Here, we show that we can accurately describe the statistical behavior of eigenstate ensembles in many-body Hamiltonians by using pure random states with physical constraints that capture the essential features of the Hamiltonian, specifically spatial locality and symmetries. We demonstrate our approach on local spin Hamiltonians with a scalar U(1) charge. By constructing ensembles of constrained random states that account for two commuting scalar charges playing the role of energy and magnetization, we describe the patterns of entanglement of mid-spectrum eigenstates beyond their average volume-law behavior, including $O(1)$ corrections and fluctuations, analytically and numerically. When defining the correspondence between quantum chaotic eigenstates in many-body Hamiltonians and RMT ensembles, our work highlights the important role played by spatial locality in describing universal features beyond the volume-law behavior.
Related papers
- Grassmann Variational Monte Carlo with neural wave functions [45.935798913942904]
We formalize the framework introduced by Pfau et al.citepfau2024accurate in terms of Grassmann geometry of the Hilbert space.<n>We validate our approach on the Heisenberg quantum spin model on the square lattice, achieving highly accurate energies and physical observables for a large number of excited states.
arXiv Detail & Related papers (2025-07-14T13:53:13Z) - Symmetries, Conservation Laws and Entanglement in Non-Hermitian Fermionic Lattices [37.69303106863453]
Non-Hermitian quantum many-body systems feature steady-state entanglement transitions driven by unitary dynamics and dissipation.
We show that the steady state is obtained by filling single-particle right eigenstates with the largest imaginary part of the eigenvalue.
We illustrate these principles in the Hatano-Nelson model with periodic boundary conditions and the non-Hermitian Su-Schrieffer-Heeger model.
arXiv Detail & Related papers (2025-04-11T14:06:05Z) - Theory of the correlated quantum Zeno effect in a monitored qubit dimer [41.94295877935867]
We show how the competition between two measurement processes give rise to two distinct Quantum Zeno (QZ) regimes.
We develop a theory based on a Gutzwiller ansatz for the wavefunction that is able to capture the structure of the Hilbert phase diagram.
We show how the two QZ regimes are intimately connected to the topology of the flow of the underlying non-Hermitian Hamiltonian governing the no-click evolution.
arXiv Detail & Related papers (2025-03-28T19:44:48Z) - The simplest 2D quantum walk detects chaoticity [0.0]
We consider an extremely simple model consisting of alternate one-dimensional walks along the two spatial coordinates of bidimensional closed domains (hard wall billiards)<n>The chaotic or regular behavior that the shape of the boundary induces in the deterministic classical equations of motion and that translates into chaotic signatures for the quantized problem also results in sharp differences for the spectral statistics and morphology of the eigenfunctions of the quantum walker.
arXiv Detail & Related papers (2025-01-23T18:23:11Z) - Quantum chaos at finite temperature in local spin Hamiltonians [0.027042267806481293]
We show that finite-temperature eigenstates of quantum chaotic Hamiltonians can be accurately described by pure random states constrained by a local charge.
We find excellent agreement between the entanglement entropy statistics of eigenstates and that of constrained random states.
arXiv Detail & Related papers (2025-01-22T19:00:08Z) - Hilbert space geometry and quantum chaos [39.58317527488534]
We consider the symmetric part of the QGT for various multi-parametric random matrix Hamiltonians.
We find for a two-dimensional parameter space that, while the ergodic phase corresponds to the smooth manifold, the integrable limit marks itself as a singular geometry with a conical defect.
arXiv Detail & Related papers (2024-11-18T19:00:17Z) - Precision bounds for multiple currents in open quantum systems [37.69303106863453]
We derivation quantum TURs and KURs for multiple observables in open quantum systems undergoing Markovian dynamics.
Our bounds are tighter than previously derived quantum TURs and KURs for single observables.
We also find an intriguing quantum signature of correlations captured by the off-diagonal element of the Fisher information matrix.
arXiv Detail & Related papers (2024-11-13T23:38:24Z) - Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.<n>Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)<n>By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Phase-space gaussian ensemble quantum camouflage [0.0]
We extend the phase-space description of the Weyl-Wigner quantum mechanics to a subset of non-linear Hamiltonians in position and momentum.<n>For gaussian statistical ensembles, the exact phase-space profile of the quantum fluctuations over the classical trajectories are found.
arXiv Detail & Related papers (2024-09-24T18:14:07Z) - Universal correlations in chaotic many-body quantum states: Fock-space formulation of Berrys random wave model [0.0]
We show that the randomness of chaotic eigenstates in interacting quantum systems hides subtle correlations imposed by their finite energy per particle.<n>These correlations are revealed when Berrys approach for chaotic eigenfunctions in single-particle systems is lifted into many-body space.<n>We then identify the universality of both the cross-correlations and the Gaussian distribution of expansion coefficients as the signatures of chaotic eigenstates.
arXiv Detail & Related papers (2024-03-15T09:26:17Z) - Locally purified density operators for noisy quantum circuits [17.38734393793605]
We show that mixed states generated from noisy quantum circuits can be efficiently represented by locally purified density operators (LPDOs)
We present a mapping from LPDOs of $N$ qubits to projected entangled-pair states of size $2times N$ and introduce a unified method for managing virtual and Kraus bonds.
arXiv Detail & Related papers (2023-12-05T16:10:30Z) - Magic in generalized Rokhsar-Kivelson wavefunctions [0.0]
We study magic, as quantified by the stabilizer Renyi entropy, in a class of models known as generalized Rokhsar-Kive systems.
We find that the maximum of the SRE generically occurs at a cusp away from the quantum critical point, where the derivative suddenly changes sign.
arXiv Detail & Related papers (2023-11-14T19:00:05Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Unified Formulation of Phase Space Mapping Approaches for Nonadiabatic
Quantum Dynamics [17.514476953380125]
Nonadiabatic dynamical processes are important quantum mechanical phenomena in chemical, materials, biological, and environmental molecular systems.
The mapping Hamiltonian on phase space coupled F-state systems is a special case.
An isomorphism between the mapping phase space approach for nonadiabatic systems and that for nonequilibrium electron transport processes is presented.
arXiv Detail & Related papers (2022-05-23T14:40:22Z) - Understanding the propagation of excitations in quantum spin chains with
different kind of interactions [68.8204255655161]
It is shown that the inhomogeneous chains are able to transfer excitations with near perfect fidelity.
It is shown that both designed chains have in common a partially ordered spectrum and well localized eigenvectors.
arXiv Detail & Related papers (2021-12-31T15:09:48Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Chaos and Ergodicity in Extended Quantum Systems with Noisy Driving [0.0]
We study the time evolution operator in a family of local quantum circuits with random fields in a fixed direction.
We show that for the systems under consideration the generalised spectral form factor can be expressed in terms of dynamical correlation functions.
This also provides a connection between the many-body Thouless time $tau_rm th$ -- the time at which the generalised spectral form factor starts following the random matrix theory prediction -- and the conservation laws of the system.
arXiv Detail & Related papers (2020-10-23T15:54:55Z) - Extremal quantum states [0.41998444721319206]
We peruse quantumness from a variety of viewpoints, concentrating on phase-space formulations.
The symmetry-transcending properties of the Husimi $Q$ function make it our basic tool.
We use these quantities to formulate extremal principles and determine in this way which states are the most and least "quantum"
arXiv Detail & Related papers (2020-10-09T18:00:02Z) - Quantum many-body attractors [0.0]
We discuss how an extensive set of strictly local dynamical symmetries can exist in a quantum system.
These strictly local symmetries lead to spontaneous breaking of continuous time-translation symmetry.
We provide an explicit recipe for constructing Hamiltonians featuring local dynamical symmetries.
arXiv Detail & Related papers (2020-08-25T16:52:47Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Spectral transitions and universal steady states in random Kraus maps
and circuits [0.8504685056067142]
We study random Kraus maps, allowing for a varying dissipation strength, and their local circuit counterpart.
The steady state, on the contrary, is not affected by the spectral transition.
The statistical properties of the local Kraus circuit are qualitatively the same as those of the nonlocal Kraus map.
arXiv Detail & Related papers (2020-07-08T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.