COVID-CT-H-UNet: a novel COVID-19 CT segmentation network based on attention mechanism and Bi-category Hybrid loss
- URL: http://arxiv.org/abs/2403.10880v1
- Date: Sat, 16 Mar 2024 10:25:07 GMT
- Title: COVID-CT-H-UNet: a novel COVID-19 CT segmentation network based on attention mechanism and Bi-category Hybrid loss
- Authors: Anay Panja, Somenath Kuiry, Alaka Das, Mita Nasipuri, Nibaran Das,
- Abstract summary: COVID-19 outbreak has emerged as a crucial focus in healthcare research.
supplementing RT-PCR with the pathological study of COVID-19 through CT imaging has become imperative.
In this paper, we propose COVID-CT-H-UNet, a COVID-19 CT segmentation network to solve these problems.
- Score: 7.139873310466422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since 2019, the global COVID-19 outbreak has emerged as a crucial focus in healthcare research. Although RT-PCR stands as the primary method for COVID-19 detection, its extended detection time poses a significant challenge. Consequently, supplementing RT-PCR with the pathological study of COVID-19 through CT imaging has become imperative. The current segmentation approach based on TVLoss enhances the connectivity of afflicted areas. Nevertheless, it tends to misclassify normal pixels between certain adjacent diseased regions as diseased pixels. The typical Binary cross entropy(BCE) based U-shaped network only concentrates on the entire CT images without emphasizing on the affected regions, which results in hazy borders and low contrast in the projected output. In addition, the fraction of infected pixels in CT images is much less, which makes it a challenge for segmentation models to make accurate predictions. In this paper, we propose COVID-CT-H-UNet, a COVID-19 CT segmentation network to solve these problems. To recognize the unaffected pixels between neighbouring diseased regions, extra visual layer information is captured by combining the attention module on the skip connections with the proposed composite function Bi-category Hybrid Loss. The issue of hazy boundaries and poor contrast brought on by the BCE Loss in conventional techniques is resolved by utilizing the composite function Bi-category Hybrid Loss that concentrates on the pixels in the diseased area. The experiment shows when compared to the previous COVID-19 segmentation networks, the proposed COVID-CT-H-UNet's segmentation impact has greatly improved, and it may be used to identify and study clinical COVID-19.
Related papers
- CDSE-UNet: Enhancing COVID-19 CT Image Segmentation with Canny Edge
Detection and Dual-Path SENet Feature Fusion [10.831487161893305]
CDSE-UNet is a novel UNet-based segmentation model that integrates Canny operator edge detection and a dual-path SENet feature fusion mechanism.
We have developed a Multiscale Convolution approach, replacing the standard Convolution in UNet, to adapt to the varied lesion sizes and shapes.
Our evaluations on public datasets demonstrate CDSE-UNet's superior performance over other leading models.
arXiv Detail & Related papers (2024-03-03T13:36:07Z) - Multi-scale alignment and Spatial ROI Module for COVID-19 Diagnosis [13.31017458409054]
We propose a deep spatial pyramid pooling (D-SPP) module to integrate contextual information over different resolutions.
We also propose a COVID-19 infection detection (CID) module to draw attention to the lesion area and remove interference from irrelevant information.
Our method produces higher accuracy of detecting COVID-19 lesions in CT and CXR images.
arXiv Detail & Related papers (2022-07-04T12:07:17Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
We propose a method that does not require either large annotated datasets or backpropagation to estimate the filters of a convolutional neural network (CNN)
For a few CT images, the user draws markers at representative normal and abnormal regions.
The method generates a feature extractor composed of a sequence of convolutional layers, whose kernels are specialized in enhancing regions similar to the marked ones.
arXiv Detail & Related papers (2021-11-16T15:03:42Z) - PSGR: Pixel-wise Sparse Graph Reasoning for COVID-19 Pneumonia
Segmentation in CT Images [83.26057031236965]
We propose a pixel-wise sparse graph reasoning (PSGR) module to enhance the modeling of long-range dependencies for COVID-19 infected region segmentation in CT images.
The PSGR module avoids imprecise pixel-to-node projections and preserves the inherent information of each pixel for global reasoning.
The solution has been evaluated against four widely-used segmentation models on three public datasets.
arXiv Detail & Related papers (2021-08-09T04:58:23Z) - Quadruple Augmented Pyramid Network for Multi-class COVID-19
Segmentation via CT [1.6815638149823744]
COVID-19, a new strain of coronavirus disease, has been one of the most serious and infectious disease in the world.
In this paper, a multi-class COVID-19 CT segmentation is proposed aiming at helping radiologists estimate the extent of effected lung volume.
arXiv Detail & Related papers (2021-03-09T16:48:15Z) - Classification and Region Analysis of COVID-19 Infection using Lung CT
Images and Deep Convolutional Neural Networks [0.8224695424591678]
This work proposes a two-stage deep Convolutional Neural Networks (CNNs) based framework for delineation of COVID-19 infected regions in Lung CT images.
In the first stage, COVID-19 specific CT image features are enhanced using a two-level discrete wavelet transformation.
These enhanced CT images are then classified using the proposed custom-made deep CoV-CTNet.
In the second stage, the CT images classified as infectious images are provided to the segmentation models for the identification and analysis of COVID-19 infectious regions.
arXiv Detail & Related papers (2020-09-16T02:28:46Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy.
There is still lack of studies on effectively quantifying the lung infection caused by COVID-19.
We propose a novel deep learning algorithm for automated segmentation of multiple COVID-19 infection regions.
arXiv Detail & Related papers (2020-04-12T16:24:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.