論文の概要: Embracing the Generative AI Revolution: Advancing Tertiary Education in Cybersecurity with GPT
- arxiv url: http://arxiv.org/abs/2403.11402v1
- Date: Mon, 18 Mar 2024 01:20:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 17:07:30.132984
- Title: Embracing the Generative AI Revolution: Advancing Tertiary Education in Cybersecurity with GPT
- Title(参考訳): ジェネレーティブAI革命を受け入れる - GPTによるサイバーセキュリティの第三次教育の促進
- Authors: Raza Nowrozy, David Jam,
- Abstract要約: GPT(Generative Pre-trained Transformer)モデルは、サイバーセキュリティに大きな影響を与える可能性がある。
本研究では,GPT,特にChatGPTがサイバーセキュリティの第三次教育に与える影響について検討した。
私たちは、サイバーセキュリティのような実践的な学位を提供する大学は、産業の需要と密接に一致し、必然的に生成するAI革命を受け入れるべきだと結論付けました。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rapid advancement of generative Artificial Intelligence (AI) technologies, particularly Generative Pre-trained Transformer (GPT) models such as ChatGPT, has the potential to significantly impact cybersecurity. In this study, we investigated the impact of GPTs, specifically ChatGPT, on tertiary education in cybersecurity, and provided recommendations for universities to adapt their curricula to meet the evolving needs of the industry. Our research highlighted the importance of understanding the alignment between GPT's ``mental model'' and human cognition, as well as the enhancement of GPT capabilities to human skills based on Bloom's taxonomy. By analyzing current educational practices and the alignment of curricula with industry requirements, we concluded that universities providing practical degrees like cybersecurity should align closely with industry demand and embrace the inevitable generative AI revolution, while applying stringent ethics oversight to safeguard responsible GPT usage. We proposed a set of recommendations focused on updating university curricula, promoting agility within universities, fostering collaboration between academia, industry, and policymakers, and evaluating and assessing educational outcomes.
- Abstract(参考訳): 生成人工知能(AI)技術の急速な進歩、特にChatGPTのような生成事前学習トランスフォーマー(GPT)モデルは、サイバーセキュリティに大きな影響を与える可能性がある。
本研究では,GPT,特にChatGPTがサイバーセキュリティの第三次教育に与える影響について検討し,その発展する産業のニーズに応えるために,大学がカリキュラムを適応するよう勧告した。
本研究は,GPTの「認知モデル」と人間の認知の整合性を理解することの重要性と,ブルームの分類に基づく人間のスキルに対するGPT能力の強化を強調した。
現状の教育実践とカリキュラムの業界要件の整合性を分析することによって、サイバーセキュリティのような実践的な学位を提供する大学は、産業の需要と密接に一致し、必然的に生成するAI革命を受け入れるとともに、責任あるGPT使用の保護に厳格な倫理的監督を適用するべきであると結論付けた。
大学カリキュラムの更新,大学内のアジリティの向上,アカデミック,産業,政策立案者の協力の育成,教育成果の評価・評価に焦点をあてた一連の勧告を提案した。
関連論文リスト
- Securing the Future of GenAI: Policy and Technology [50.586585729683776]
政府はGenAIを規制し、イノベーションと安全性のバランスをとるという課題に、世界中で不満を抱いている。
Google、ウィスコンシン大学、マディソン大学、スタンフォード大学が共同で行ったワークショップは、GenAIのポリシーとテクノロジーのギャップを埋めることを目的としていた。
本稿では,技術進歩を妨げることなく,どのように規制を設計できるか,といった問題に対処するワークショップの議論を要約する。
論文 参考訳(メタデータ) (2024-05-21T20:30:01Z) - A University Framework for the Responsible use of Generative AI in Research [0.0]
ジェネレーティブ人工知能(Generative Artificial Intelligence、ジェネレーティブAI)は、研究の完全性のための機会とリスクを兼ね備えている。
組織が生成AIの責任ある利用を促進・促進するための枠組みを提案する。
論文 参考訳(メタデータ) (2024-04-30T04:00:15Z) - AI in ESG for Financial Institutions: An Industrial Survey [4.893954917947095]
本稿では,ESGフレームワークの活性化におけるAIの必要性と影響を明らかにするために,産業環境を調査した。
調査では、分析能力、リスク評価、顧客エンゲージメント、報告精度など、ESGの主要な3つの柱にまたがるAIアプリケーションを分類した。
この論文は、ESG関連の銀行プロセスにおけるAI展開の倫理的側面を強調し、責任と持続可能なAIの衝動についても論じている。
論文 参考訳(メタデータ) (2024-02-03T02:14:47Z) - Integrating Generative AI in Hackathons: Opportunities, Challenges, and Educational Implications [0.24739484546803336]
ハッカソンはソフトウェア産業において重要なプラットフォームとして登場し、組織や学生のイノベーションとスキル開発を推進してきた。
人工知能(AI)と機械学習の融合により、ハッカソンが作り直され、学習機会が強化され、倫理的課題も導入されている。
本研究は, アイオワ大学ハッカソン校の事例研究を中心に, 生成AIが学生の技術的選択に与える影響を考察する。
論文 参考訳(メタデータ) (2024-01-30T20:45:49Z) - From Generative AI to Generative Internet of Things: Fundamentals,
Framework, and Outlooks [82.964958051535]
生成人工知能(GAI)は、現実的なデータを生成し、高度な意思決定を促進する能力を持っている。
GAIを現代のモノのインターネット(IoT)に統合することによって、ジェネレーティブ・インターネット・オブ・モノ(GIoT)が登場し、社会の様々な側面に革命をもたらす大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-10-27T02:58:11Z) - Federated Learning-Empowered AI-Generated Content in Wireless Networks [58.48381827268331]
フェデレートドラーニング(FL)は、学習効率を改善し、AIGCのプライバシー保護を達成するために利用することができる。
我々は,AIGCの強化を目的としたFLベースの技術を提案し,ユーザが多様でパーソナライズされた高品質なコンテンツを作成できるようにすることを目的とする。
論文 参考訳(メタデータ) (2023-07-14T04:13:11Z) - Performance of ChatGPT on the US Fundamentals of Engineering Exam:
Comprehensive Assessment of Proficiency and Potential Implications for
Professional Environmental Engineering Practice [0.0]
本研究は, GPT-4 モデルである ChatGPT を用いて, 工学基礎(FE) 環境評価における良好な性能を実現することの実現可能性と有効性について検討する。
この結果は、ChatGPTモデルの連続反復における数学的能力の顕著な改善を反映し、複雑な工学的問題を解く可能性を示している。
論文 参考訳(メタデータ) (2023-04-20T16:54:34Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Trustworthy AI Inference Systems: An Industry Research View [58.000323504158054]
我々は、信頼できるAI推論システムの設計、展開、運用にアプローチするための業界調査ビューを提供する。
信頼された実行環境を用いたAIシステムの機会と課題を強調します。
我々は,産業,アカデミック,政府研究者のグローバルな集団的注意を必要とする,さらなる発展の分野を概説する。
論文 参考訳(メタデータ) (2020-08-10T23:05:55Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI開発者は、責任を負うことのできる検証可能な主張をする必要がある。
このレポートは、さまざまな利害関係者がAIシステムに関するクレームの妥当性を改善するための様々なステップを示唆している。
我々は、この目的のための10のメカニズム、すなわち、組織、ソフトウェア、ハードウェアを分析し、それらのメカニズムの実装、探索、改善を目的とした推奨を行う。
論文 参考訳(メタデータ) (2020-04-15T17:15:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。