Binary Noise for Binary Tasks: Masked Bernoulli Diffusion for Unsupervised Anomaly Detection
- URL: http://arxiv.org/abs/2403.11667v1
- Date: Mon, 18 Mar 2024 11:15:03 GMT
- Title: Binary Noise for Binary Tasks: Masked Bernoulli Diffusion for Unsupervised Anomaly Detection
- Authors: Julia Wolleb, Florentin Bieder, Paul Friedrich, Peter Zhang, Alicia Durrer, Philippe C. Cattin,
- Abstract summary: We present a novel and fast unsupervised anomaly detection approach based on latent Bernoulli diffusion models.
We achieve state-of-the-art performance compared to other diffusion-based unsupervised anomaly detection algorithms.
- Score: 1.5550533143704954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The high performance of denoising diffusion models for image generation has paved the way for their application in unsupervised medical anomaly detection. As diffusion-based methods require a lot of GPU memory and have long sampling times, we present a novel and fast unsupervised anomaly detection approach based on latent Bernoulli diffusion models. We first apply an autoencoder to compress the input images into a binary latent representation. Next, a diffusion model that follows a Bernoulli noise schedule is employed to this latent space and trained to restore binary latent representations from perturbed ones. The binary nature of this diffusion model allows us to identify entries in the latent space that have a high probability of flipping their binary code during the denoising process, which indicates out-of-distribution data. We propose a masking algorithm based on these probabilities, which improves the anomaly detection scores. We achieve state-of-the-art performance compared to other diffusion-based unsupervised anomaly detection algorithms while significantly reducing sampling time and memory consumption. The code is available at https://github.com/JuliaWolleb/Anomaly_berdiff.
Related papers
- bit2bit: 1-bit quanta video reconstruction via self-supervised photon prediction [57.199618102578576]
We propose bit2bit, a new method for reconstructing high-quality image stacks at original resolution from sparse binary quantatemporal image data.
Inspired by recent work on Poisson denoising, we developed an algorithm that creates a dense image sequence from sparse binary photon data.
We present a novel dataset containing a wide range of real SPAD high-speed videos under various challenging imaging conditions.
arXiv Detail & Related papers (2024-10-30T17:30:35Z) - Consistent Diffusion Meets Tweedie: Training Exact Ambient Diffusion Models with Noisy Data [74.2507346810066]
Ambient diffusion is a recently proposed framework for training diffusion models using corrupted data.
We present the first framework for training diffusion models that provably sample from the uncorrupted distribution given only noisy training data.
arXiv Detail & Related papers (2024-03-20T14:22:12Z) - Diffusion Models With Learned Adaptive Noise [12.530583016267768]
We propose a learned diffusion process that applies noise at different rates across an image.
MuLAN sets a new state-of-the-art in density estimation on CIFAR-10 and ImageNet.
arXiv Detail & Related papers (2023-12-20T18:00:16Z) - Gradpaint: Gradient-Guided Inpainting with Diffusion Models [71.47496445507862]
Denoising Diffusion Probabilistic Models (DDPMs) have recently achieved remarkable results in conditional and unconditional image generation.
We present GradPaint, which steers the generation towards a globally coherent image.
We generalizes well to diffusion models trained on various datasets, improving upon current state-of-the-art supervised and unsupervised methods.
arXiv Detail & Related papers (2023-09-18T09:36:24Z) - DiffGANPaint: Fast Inpainting Using Denoising Diffusion GANs [19.690288425689328]
In this paper, we propose a Denoising Diffusion Probabilistic Model (DDPM) based model capable of filling missing pixels fast.
Experiments on general-purpose image inpainting datasets verify that our approach performs superior or on par with most contemporary works.
arXiv Detail & Related papers (2023-08-03T17:50:41Z) - Denoising Diffusion Models for Plug-and-Play Image Restoration [135.6359475784627]
This paper proposes DiffPIR, which integrates the traditional plug-and-play method into the diffusion sampling framework.
Compared to plug-and-play IR methods that rely on discriminative Gaussian denoisers, DiffPIR is expected to inherit the generative ability of diffusion models.
arXiv Detail & Related papers (2023-05-15T20:24:38Z) - Denoising Diffusion Samplers [41.796349001299156]
Denoising diffusion models are a popular class of generative models providing state-of-the-art results in many domains.
We explore a similar idea to sample approximately from unnormalized probability density functions and estimate their normalizing constants.
While score matching is not applicable in this context, we can leverage many of the ideas introduced in generative modeling for Monte Carlo sampling.
arXiv Detail & Related papers (2023-02-27T14:37:16Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Fast Unsupervised Brain Anomaly Detection and Segmentation with
Diffusion Models [1.6352599467675781]
We propose a method based on diffusion models to detect and segment anomalies in brain imaging.
Our diffusion models achieve competitive performance compared with autoregressive approaches across a series of experiments with 2D CT and MRI data.
arXiv Detail & Related papers (2022-06-07T17:30:43Z) - Subspace Diffusion Generative Models [4.310834990284412]
Score-based models generate samples by mapping noise to data (and vice versa) via a high-dimensional diffusion process.
We restrict the diffusion via projections onto subspaces as the data distribution evolves toward noise.
Our framework is fully compatible with continuous-time diffusion and retains its flexible capabilities.
arXiv Detail & Related papers (2022-05-03T13:43:47Z) - Truncated Diffusion Probabilistic Models and Diffusion-based Adversarial
Auto-Encoders [137.1060633388405]
Diffusion-based generative models learn how to generate the data by inferring a reverse diffusion chain.
We propose a faster and cheaper approach that adds noise not until the data become pure random noise.
We show that the proposed model can be cast as an adversarial auto-encoder empowered by both the diffusion process and a learnable implicit prior.
arXiv Detail & Related papers (2022-02-19T20:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.