Fusion of deterministically generated photonic graph states
- URL: http://arxiv.org/abs/2403.11950v2
- Date: Tue, 4 Jun 2024 15:41:54 GMT
- Title: Fusion of deterministically generated photonic graph states
- Authors: Philip Thomas, Leonardo Ruscio, Olivier Morin, Gerhard Rempe,
- Abstract summary: Entanglement has evolved from an enigmatic concept of quantum physics to a key ingredient of quantum technology.
Here we achieve this goal by employing an optical resonator containing two atoms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entanglement has evolved from an enigmatic concept of quantum physics to a key ingredient of quantum technology. It explains correlations between measurement outcomes that contradict classical physics, and has been widely explored with small sets of individual qubits. Multi-partite entangled states build up in gate-based quantum-computing protocols, and $\unicode{x2013}$ from a broader perspective $\unicode{x2013}$ were proposed as the main resource for measurement-based quantum-information processing. The latter requires the ex-ante generation of a multi-qubit entangled state described by a graph. Small graph states such as Bell or linear cluster states have been produced with photons, but the proposed quantum computing and quantum networking applications require fusion of such states into larger and more powerful states in a programmable fashion. Here we achieve this goal by employing an optical resonator containing two individually addressable atoms. Ring and tree graph states with up to eight qubits, with the names reflecting the entanglement topology, are efficiently fused from the photonic states emitted by the individual atoms. The fusion process itself employs a cavity-assisted gate between the two atoms. Our technique is in principle scalable to even larger numbers of qubits, and is the decisive step towards, for instance, a memory-less quantum repeater in a future quantum internet.
Related papers
- Deterministic and reconfigurable graph state generation with a single solid-state quantum emitter [0.0]
We demonstrate deterministic and reconfigurable graph state generation with optical solid-state integrated quantum emitters.
We perform quantum state tomography of two successive photons, measuring Bell state fidelities up to 0.80$pm$0.04 and concurrences up to 0.69$pm$0.09.
This simple optical scheme, compatible with commercially available quantum dot-based single photon sources, brings us a step closer to fault-tolerant quantum computing with spins and photons.
arXiv Detail & Related papers (2024-10-30T23:59:54Z) - The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Deterministic generation of a 20-qubit two-dimensional photonic cluster state [87.34681687753141]
We present a device capable of emitting large-scale entangled microwave photonic states in a two dimensional ladder structure.
By interleaving two-qubit gates with controlled photon emission, we generate 2 x n grids of time- and frequency-multiplexed cluster states of itinerant microwave photons.
We measure a signature of localizable entanglement across up to 20 photonic qubits.
arXiv Detail & Related papers (2024-09-10T16:25:24Z) - Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Advancing Quantum Networking: Some Tools and Protocols for Ideal and
Noisy Photonic Systems [0.0]
Photonic links enable quantum networking.
Photonic links will connect co-located quantum processors to enable large-scale quantum computers.
Photonic links will link distant nodes in space enabling new tests of fundamental physics.
arXiv Detail & Related papers (2024-03-04T22:06:21Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Quantum-Memory-Enhanced Preparation of Nonlocal Graph States [10.086067943202416]
Graph states are an important class of multipartite entangled states.
We show an efficient scheme to prepare graph states with only two atomic excitations in quantum networks.
Our work demonstrates the prospect of efficient generation of multipartite entangled states in large-scale distributed systems.
arXiv Detail & Related papers (2022-02-27T15:42:09Z) - Nonlinear down-conversion in a single quantum dot [0.0]
Photonic quantum technologies are on the verge of becoming commercially available.
One crucial building block are tailored nanoscale integratable quantum light sources.
We show an emitter-independent method to tailor and control the properties of the single photon emission.
arXiv Detail & Related papers (2021-05-26T08:31:16Z) - Universal quantum computation and quantum error correction with
ultracold atomic mixtures [47.187609203210705]
We propose a mixture of two ultracold atomic species as a platform for universal quantum computation with long-range entangling gates.
One atomic species realizes localized collective spins of tunable length, which form the fundamental unit of information.
We discuss a finite-dimensional version of the Gottesman-Kitaev-Preskill code to protect quantum information encoded in the collective spins.
arXiv Detail & Related papers (2020-10-29T20:17:14Z) - Reconstructing quantum states with quantum reservoir networks [4.724825031148412]
We introduce a quantum state tomography platform based on the framework of reservoir computing.
It forms a quantum neural network, and operates as a comprehensive device for reconstructing an arbitrary quantum state.
arXiv Detail & Related papers (2020-08-14T14:01:55Z) - Quantum teleportation with hybrid entangled resources prepared from
heralded quantum states [68.8204255655161]
We propose the generation of a hybrid entangled resource (HER)
The work includes a discussion about the fidelity dependence on the geometrical properties of the medium through which the HER is generated.
No spectral filtering is employed in the heralding process, which emphasizes the feasibility of this scheme without compromising photon flux.
arXiv Detail & Related papers (2020-02-07T21:20:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.