論文の概要: Tailoring Education with GenAI: A New Horizon in Lesson Planning
- arxiv url: http://arxiv.org/abs/2403.12071v1
- Date: Mon, 12 Feb 2024 17:30:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 07:36:54.695040
- Title: Tailoring Education with GenAI: A New Horizon in Lesson Planning
- Title(参考訳): GenAIによる教育の展開 : 授業計画における新たな地軸
- Authors: Kostas Karpouzis, Dimitris Pantazatos, Joanna Taouki, Kalliopi Meli,
- Abstract要約: 本研究では、教育者のためのデジタルアシスタントとして設計されたGenAIツールを導入し、カスタマイズされた授業プランの作成を可能にする。
このツールは'interactive mega-prompt'と呼ばれる革新的な機能を利用している。
ツールの有効性を評価するため,定量的(時間節約率の%)と質的(ユーザ満足度)の両方を取り入れた総合的な方法論を実装した。
- 参考スコア(独自算出の注目度): 0.21427777919040414
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The advent of Generative AI (GenAI) in education presents a transformative approach to traditional teaching methodologies, which often overlook the diverse needs of individual students. This study introduces a GenAI tool, based on advanced natural language processing, designed as a digital assistant for educators, enabling the creation of customized lesson plans. The tool utilizes an innovative feature termed 'interactive mega-prompt,' a comprehensive query system that allows educators to input detailed classroom specifics such as student demographics, learning objectives, and preferred teaching styles. This input is then processed by the GenAI to generate tailored lesson plans. To evaluate the tool's effectiveness, a comprehensive methodology incorporating both quantitative (i.e., % of time savings) and qualitative (i.e., user satisfaction) criteria was implemented, spanning various subjects and educational levels, with continuous feedback collected from educators through a structured evaluation form. Preliminary results show that educators find the GenAI-generated lesson plans effective, significantly reducing lesson planning time and enhancing the learning experience by accommodating diverse student needs. This AI-driven approach signifies a paradigm shift in education, suggesting its potential applicability in broader educational contexts, including special education needs (SEN), where individualized attention and specific learning aids are paramount
- Abstract(参考訳): 教育におけるジェネレーティブAI(GenAI)の出現は、従来の教育方法論への転換的アプローチを示し、個々の学生の多様なニーズを見落としていることが多い。
本研究では,教育者のためのデジタルアシスタントとして設計された,高度な自然言語処理に基づくGenAIツールを導入し,カスタマイズした授業プランの作成を可能にする。
このツールは'interactive mega-prompt'と呼ばれるイノベーティブな機能を利用しており、これは総合的なクエリシステムで、教育者は生徒の人口統計、学習目的、好みの教育スタイルなどの詳細な教室特質を入力できる。
この入力はGenAIによって処理され、調整されたレッスンプランを生成する。
ツールの有効性を評価するため,定量的(時間節約率の%)と質的(ユーザ満足度)の基準を取り入れた総合的な方法論が実施され,様々な教科や教育レベルにまたがって,教育者からの継続的なフィードバックを構造化された評価形式で収集した。
予備的な結果から,GenAIが生み出す授業計画が有効であり,授業計画時間を大幅に短縮し,多様な学生のニーズに配慮して学習経験を向上させることが示唆された。
このAI駆動のアプローチは、教育のパラダイムシフトを意味し、個別の注意と特定の学習支援が最重要となる特別教育ニーズ(SEN)を含む、幅広い教育文脈で適用可能な可能性を示唆している。
関連論文リスト
- Enhancing Higher Education with Generative AI: A Multimodal Approach for Personalised Learning [2.334887570960192]
本研究は,高等教育分野におけるジェネレーティブAI(GenAI)の可能性を探るものである。
我々は、幅広い教育的クエリに対処するGenAIの可能性を示す。
本研究は,実践的なWebアプリケーションを実証することにより,よりダイナミックで応答性の高い教育環境を育成するために,GenAI技術を統合することの必須事項を浮き彫りにする。
論文 参考訳(メタデータ) (2025-02-11T09:29:29Z) - LLM-powered Multi-agent Framework for Goal-oriented Learning in Intelligent Tutoring System [54.71619734800526]
GenMentorは、ITS内で目標指向でパーソナライズされた学習を提供するために設計されたマルチエージェントフレームワークである。
学習者の目標を、カスタムのゴール・トゥ・スキルデータセットでトレーニングされた微調整LDMを使用して、必要なスキルにマッピングする。
GenMentorは、個々の学習者のニーズに合わせて探索・描画・統合機構で学習内容を調整する。
論文 参考訳(メタデータ) (2025-01-27T03:29:44Z) - From Automation to Cognition: Redefining the Roles of Educators and Generative AI in Computing Education [2.0628700367476203]
Generative Artificial Intelligence(GenAI)は、コンピュータ教育(CE)における教育と学習に革命をもたらす機会を提供する
しかし、教育者は、学生がGenAIを過度に信頼し、これらのツールを使って学習プロセスに携わることなくソリューションを生成するのではないかという懸念を表明している。
本稿では、CSに着目した教育環境におけるGenAIの使用経験と、それに従って実施した変化について述べる。
論文 参考訳(メタデータ) (2024-12-16T03:36:25Z) - BoilerTAI: A Platform for Enhancing Instruction Using Generative AI in Educational Forums [0.0]
本稿では,Generative AI(GenAI)とオンライン教育フォーラムをシームレスに統合する,実用的でスケーラブルなプラットフォームについて述べる。
このプラットフォームは、学生ポストとLarge Language Model(LLM)との対話を円滑に進めることによって、指導スタッフが反応を効率的に管理し、洗練し、承認することを可能にする。
論文 参考訳(メタデータ) (2024-09-20T04:00:30Z) - Evaluating and Optimizing Educational Content with Large Language Model Judgments [52.33701672559594]
言語モデル(LM)を教育専門家として活用し,学習結果に対する様々な指導の影響を評価する。
本稿では,一方のLMが他方のLMの判断を報酬関数として利用して命令材料を生成する命令最適化手法を提案する。
ヒトの教師によるこれらのLM生成ワークシートの評価は、LM判定と人間の教師の嗜好との間に有意な整合性を示す。
論文 参考訳(メタデータ) (2024-03-05T09:09:15Z) - The AI Assessment Scale (AIAS): A Framework for Ethical Integration of Generative AI in Educational Assessment [0.0]
我々は,GenAIツールを教育評価に統合するための,実用的でシンプルで十分に包括的なツールの概要を述べる。
AIアセスメント尺度(AIAS)は、教育者に対して、評価におけるGenAI使用の適切なレベルを選択する権限を与える。
実践的で柔軟なアプローチを採用することで、AIASは、教育におけるGenAIに関する現在の不確実性と不安に対処するための、非常に必要な出発点を形成することができる。
論文 参考訳(メタデータ) (2023-12-12T09:08:36Z) - Towards Goal-oriented Intelligent Tutoring Systems in Online Education [69.06930979754627]
目標指向知能チューニングシステム(GITS)という新しいタスクを提案する。
GITSは,演習や評価のカスタマイズを戦略的に計画することで,学生の指定概念の習得を可能にすることを目的としている。
PAI(Planning-Assessment-Interaction)と呼ばれるグラフに基づく新しい強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-03T12:37:16Z) - Empowering Private Tutoring by Chaining Large Language Models [87.76985829144834]
本研究は,最先端の大規模言語モデル(LLM)を活用した,本格的な知的チューリングシステムの開発を探求する。
このシステムは、相互に接続された3つのコアプロセス(相互作用、反射、反応)に分けられる。
各プロセスは LLM ベースのツールと動的に更新されたメモリモジュールによって実装される。
論文 参考訳(メタデータ) (2023-09-15T02:42:03Z) - A Model for Integrating Generative AI into Course Content Development [0.0]
GAIDEは、ジェネレーティブAI(GenAI)を使用して教育コンテンツ作成を促進するための新しいフレームワークである。
コンテンツ開発を効率化し、動的材料の開発を奨励し、教育設計におけるGenAIの有用性を実証することを目的としている。
論文 参考訳(メタデータ) (2023-08-23T17:47:35Z) - Unsupervised Domain Adaptive Person Re-Identification via Human Learning
Imitation [67.52229938775294]
近年、研究者は、異なる人物の再識別データセット間のドメインギャップを減らすために、教師学生フレームワークを彼らの手法に活用することを提案している。
近年の教員中心の枠組みに基づく手法に着想を得て,異なる側面から人間の学習過程を模倣するためのさらなる探究を提案する。
論文 参考訳(メタデータ) (2021-11-28T01:14:29Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
パーソナライズ学習の目的は、学習者の強みに合致する効果的な知識獲得トラックをデザインし、目標を達成するために弱みをバイパスすることである。
近年、人工知能(AI)と機械学習(ML)の隆盛は、パーソナライズされた教育を強化するための新しい視点を広げています。
論文 参考訳(メタデータ) (2021-01-19T12:23:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。