論文の概要: Light Curve Classification with DistClassiPy: a new distance-based classifier
- arxiv url: http://arxiv.org/abs/2403.12120v1
- Date: Mon, 18 Mar 2024 18:00:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 18:31:46.283889
- Title: Light Curve Classification with DistClassiPy: a new distance-based classifier
- Title(参考訳): DistClassiPyを用いた光曲線分類:新しい距離ベース分類器
- Authors: Siddharth Chaini, Ashish Mahabal, Ajit Kembhavi, Federica B. Bianco,
- Abstract要約: 我々はDistClassiPyと呼ばれる距離メートル法に基づく新しい分類器を開発した。
我々は、異なるクラスの天体間の距離を比較することで、変光星の光曲線を分類する。
この分類器は最先端の性能に適合するが, 計算要求が低く, 解釈性も向上していることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rise of synoptic sky surveys has ushered in an era of big data in time-domain astronomy, making data science and machine learning essential tools for studying celestial objects. Tree-based (e.g. Random Forests) and deep learning models represent the current standard in the field. We explore the use of different distance metrics to aid in the classification of objects. For this, we developed a new distance metric based classifier called DistClassiPy. The direct use of distance metrics is an approach that has not been explored in time-domain astronomy, but distance-based methods can aid in increasing the interpretability of the classification result and decrease the computational costs. In particular, we classify light curves of variable stars by comparing the distances between objects of different classes. Using 18 distance metrics applied to a catalog of 6,000 variable stars in 10 classes, we demonstrate classification and dimensionality reduction. We show that this classifier meets state-of-the-art performance but has lower computational requirements and improved interpretability. We have made DistClassiPy open-source and accessible at https://pypi.org/project/distclassipy/ with the goal of broadening its applications to other classification scenarios within and beyond astronomy.
- Abstract(参考訳): シントロピック・スカイサーベイの台頭は、時間領域天文学におけるビッグデータの時代に始まり、データ科学と機械学習が天体の研究に欠かせないツールとなった。
ツリーベース(例えばランダムフォレスト)とディープラーニングモデルは、この分野の現在の標準を表している。
物体の分類に異なる距離の測定値を用いる方法について検討する。
そこで我々はDistClassiPyという距離メートル法に基づく新しい分類器を開発した。
距離メトリクスの直接利用は、時間領域天文学では研究されていないアプローチであるが、距離に基づく手法は、分類結果の解釈可能性を高め、計算コストを減少させるのに役立つ。
特に、異なるクラスの天体間の距離を比較することで、変光星の光曲線を分類する。
10級の6,000個の変光星のカタログに応用した18の距離測定値を用いて,分類と次元の減少を実証した。
この分類器は最先端の性能に適合するが, 計算要求が低く, 解釈性も向上していることを示す。
DistClassiPyをオープンソースにしてhttps://pypi.org/project/distclassipy/でアクセスできるようにした。
関連論文リスト
- AstroM$^3$: A self-supervised multimodal model for astronomy [0.0]
本稿では,モデルが複数のモーダルから同時に学習できる自己教師型事前学習手法AstroM$3$を提案する。
具体的には、CLIP(Contrastive Language- Image Pretraining)モデルをトリモーダル設定に拡張し、時系列測光データ、スペクトル、天体物理メタデータの統合を可能にする。
以上の結果から,CLIP事前学習により時系列光度測定の分類性能が向上し,精度が84.6%から91.5%に向上した。
論文 参考訳(メタデータ) (2024-11-13T18:20:29Z) - Semi-Supervised Domain Adaptation for Cross-Survey Galaxy Morphology
Classification and Anomaly Detection [57.85347204640585]
We developed a Universal Domain Adaptation method DeepAstroUDA。
異なるタイプのクラスオーバーラップしたデータセットに適用することができる。
初めて、我々は2つの非常に異なる観測データセットに対するドメイン適応の有効利用を実演した。
論文 参考訳(メタデータ) (2022-11-01T18:07:21Z) - DMODE: Differential Monocular Object Distance Estimation Module without Class Specific Information [8.552738832104101]
単分子距離推定のためのクラス非依存手法であるDMODEを提案する。
DMODEは、カメラの動きと時間とともにその大きさの変動を融合させることで、物体の距離を推定する。
我々は,TrackRCNN と EagerMOT からの出力と接点境界ボックスアノテーションを用いて,KITTI MOTS データセット上でのモデルを評価する。
論文 参考訳(メタデータ) (2022-10-23T02:06:56Z) - Distance Learner: Incorporating Manifold Prior to Model Training [1.6752182911522522]
本稿では,最新のDeep Neural Networks (DNN) において,多様体仮説を先行として組み込む新しい手法である距離学習器を提案する。
分類において、距離学習者は最も近い予測されたクラス多様体に対応するクラスを選択する。
本手法は, 対向ロバスト性(対向ロバスト性)の課題において評価し, 標準分類器を大きなマージンで上回るだけでなく, 最先端の対向訓練によって訓練された分類器と同等に性能を発揮することを示した。
論文 参考訳(メタデータ) (2022-07-14T13:07:08Z) - On Hyperbolic Embeddings in 2D Object Detection [76.12912000278322]
双曲幾何学が対象分類空間の基盤構造に適合するかどうかを考察する。
2段階、キーポイントベース、トランスフォーマーベースオブジェクト検出アーキテクチャに双曲型分類器を組み込む。
分類空間の構造に現れる分類階級階層を観察し、分類誤差を低くし、全体的な対象検出性能を高める。
論文 参考訳(メタデータ) (2022-03-15T16:43:40Z) - AutoGeoLabel: Automated Label Generation for Geospatial Machine Learning [69.47585818994959]
リモートセンシングデータのためのラベルの自動生成のためのビッグデータ処理パイプラインを評価する。
我々は,大規模データプラットフォームであるIBM PAIRSを用いて,密集都市部でそのようなラベルを動的に生成する。
論文 参考訳(メタデータ) (2022-01-31T20:02:22Z) - Contrastive Object Detection Using Knowledge Graph Embeddings [72.17159795485915]
一つのホットアプローチで学習したクラス埋め込みの誤差統計と、自然言語処理や知識グラフから意味的に構造化された埋め込みを比較した。
本稿では,キーポイントベースおよびトランスフォーマーベースオブジェクト検出アーキテクチャの知識埋め込み設計を提案する。
論文 参考訳(メタデータ) (2021-12-21T17:10:21Z) - Automatic classification of eclipsing binary stars using deep learning
methods [0.0]
本稿では,深層学習を用いた楕円形星の自動分類に着目する。
我々の分類器は、二元星の光曲線を2つのクラスに分類するためのツールを提供する。
最高の性能の分類器は、双方向長短期記憶(LSTM)と1次元畳み込みニューラルネットワークを組み合わせることで、評価セットで98%の精度を達成した。
論文 参考訳(メタデータ) (2021-08-03T17:28:03Z) - Ranking the information content of distance measures [61.754016309475745]
2つの異なる距離測度を用いて保持する相対的情報を評価する統計的テストを導入する。
これにより、候補者のプールから最も情報に富んだ距離を測定することができる。
論文 参考訳(メタデータ) (2021-04-30T15:57:57Z) - Quadric hypersurface intersection for manifold learning in feature space [52.83976795260532]
適度な高次元と大きなデータセットに適した多様体学習技術。
この手法は、二次超曲面の交点という形で訓練データから学習される。
テスト時、この多様体は任意の新しい点に対する外れ値スコアを導入するのに使うことができる。
論文 参考訳(メタデータ) (2021-02-11T18:52:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。