論文の概要: Variational Approach for Efficient KL Divergence Estimation in Dirichlet Mixture Models
- arxiv url: http://arxiv.org/abs/2403.12158v1
- Date: Mon, 18 Mar 2024 18:14:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 18:31:46.199868
- Title: Variational Approach for Efficient KL Divergence Estimation in Dirichlet Mixture Models
- Title(参考訳): ディリクレ混合モデルにおける効率的なKL偏差推定のための変分法
- Authors: Samyajoy Pal, Christian Heumann,
- Abstract要約: 本研究は, ディリクレ混合モデル(DMM)におけるクルバック・リブラー(KL)の多様性の効率的な推定に挑戦する。
従来のアプローチはモンテカルロ法を計算的に要求することに依存しており、新しい変分法の導入を動機付けていた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study tackles the efficient estimation of Kullback-Leibler (KL) Divergence in Dirichlet Mixture Models (DMM), crucial for clustering compositional data. Despite the significance of DMMs, obtaining an analytically tractable solution for KL Divergence has proven elusive. Past approaches relied on computationally demanding Monte Carlo methods, motivating our introduction of a novel variational approach. Our method offers a closed-form solution, significantly enhancing computational efficiency for swift model comparisons and robust estimation evaluations. Validation using real and simulated data showcases its superior efficiency and accuracy over traditional Monte Carlo-based methods, opening new avenues for rapid exploration of diverse DMM models and advancing statistical analyses of compositional data.
- Abstract(参考訳): 本研究は,構成データのクラスタリングに不可欠なディリクレ混合モデル (DMM) におけるKulback-Leibler (KL) の分散を効率的に推定することに取り組む。
DMMが重要であるにも拘わらず、KL分枝に対する解析的に抽出可能な解が得られることが証明されている。
過去のアプローチはモンテカルロ法を計算的に要求することに依存しており、新しい変分法の導入を動機付けていた。
本手法は,高速モデル比較とロバスト評価のための計算効率を大幅に向上する閉形式解を提供する。
実データとシミュレーションデータを用いた検証は、モンテカルロの従来の手法よりも優れた効率と精度を示し、多様なDMMモデルの迅速な探索と、構成データの統計的解析の進歩に新たな道を開く。
関連論文リスト
- Linear Noise Approximation Assisted Bayesian Inference on Mechanistic Model of Partially Observed Stochastic Reaction Network [2.325005809983534]
本稿では、部分的に観察された酵素反応ネットワーク(SRN)に対する効率的なベイズ推論手法を開発する。
線形雑音近似(LNA)メタモデルを提案する。
マルコフ・チェイン・モンテカルロの収束を高速化するために、導出確率の勾配を利用して効率的な後方サンプリング手法を開発した。
論文 参考訳(メタデータ) (2024-05-05T01:54:21Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Mixture of Coupled HMMs for Robust Modeling of Multivariate Healthcare
Time Series [7.5986411724707095]
隠れマルコフモデル(M-CHMM)を結合した新しいモデルのクラスを提案する。
モデル学習を実現するために、CHMM内の潜伏変数のシーケンスをサンプリングする2つのアルゴリズムを導出する。
既存の推論手法と比較して,アルゴリズムは計算可能であり,混合性が向上し,推定精度が向上する。
論文 参考訳(メタデータ) (2023-11-14T02:55:37Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - Low-variance estimation in the Plackett-Luce model via quasi-Monte Carlo
sampling [58.14878401145309]
PLモデルにおいて,より標本効率の高い予測値を生成するための新しい手法を開発した。
Amazon MusicのリアルなレコメンデーションデータとYahooの学習からランクへの挑戦を理論的にも実証的にも使用しています。
論文 参考訳(メタデータ) (2022-05-12T11:15:47Z) - Community Detection in the Stochastic Block Model by Mixed Integer
Programming [3.8073142980733]
Degree-Corrected Block Model (DCSBM) は、コミュニティ構造を持つランダムグラフを生成する一般的なモデルである。
DCSBMに基づくコミュニティ検出の標準的なアプローチは、最大推定(MLE)により観測されたネットワークデータを生成する可能性が最も高いモデルパラメータを探索することである。
本稿では,モデルパラメータと最大確率のコミュニティ割当を観測グラフから確実に求める数学的計画式と厳密解法を提案する。
論文 参考訳(メタデータ) (2021-01-26T22:04:40Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
アンサンブルセグメンテーションモデルを構築するための汎用的で効率的なセグメンテーションフレームワークを提案する。
提案手法では,層選択法を用いて効率よくアンサンブルモデルを生成することができる。
また,新たな画素単位の不確実性損失を考案し,予測性能を向上する。
論文 参考訳(メタデータ) (2020-05-21T16:08:38Z) - Scaling Bayesian inference of mixed multinomial logit models to very
large datasets [9.442139459221785]
本稿では,バックプロパゲーション,自動微分,GPU加速計算を活用するアモルティファイド変分推論手法を提案する。
本研究では, 後部近似の柔軟性を高めるために, フローの正規化がいかに有効かを示す。
論文 参考訳(メタデータ) (2020-04-11T15:30:47Z) - Efficient Debiased Evidence Estimation by Multilevel Monte Carlo
Sampling [0.0]
ベイズ推論に基づくマルチレベルモンテカルロ法(MLMC)の最適化手法を提案する。
計算結果から,従来の推定値と比較すると,かなりの計算量の削減が確認できた。
論文 参考訳(メタデータ) (2020-01-14T09:14:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。