論文の概要: Temporally-Consistent Koopman Autoencoders for Forecasting Dynamical Systems
- arxiv url: http://arxiv.org/abs/2403.12335v1
- Date: Tue, 19 Mar 2024 00:48:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 15:51:27.221990
- Title: Temporally-Consistent Koopman Autoencoders for Forecasting Dynamical Systems
- Title(参考訳): 動的システムの予測のための時間一貫性クープマンオートエンコーダ
- Authors: Indranil Nayak, Debdipta Goswami, Mrinal Kumar, Fernando Teixeira,
- Abstract要約: テンポラリ一貫性を有するクープマンオートエンコーダ(tcKAE)について紹介する。
tcKAEは、制約付き、ノイズの多いトレーニングデータであっても正確な長期予測を生成する。
我々は,最先端のKAEモデルよりもtcKAEの方が,様々なテストケースで優れた性能を示す。
- 参考スコア(独自算出の注目度): 42.6886113798806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Absence of sufficiently high-quality data often poses a key challenge in data-driven modeling of high-dimensional spatio-temporal dynamical systems. Koopman Autoencoders (KAEs) harness the expressivity of deep neural networks (DNNs), the dimension reduction capabilities of autoencoders, and the spectral properties of the Koopman operator to learn a reduced-order feature space with simpler, linear dynamics. However, the effectiveness of KAEs is hindered by limited and noisy training datasets, leading to poor generalizability. To address this, we introduce the Temporally-Consistent Koopman Autoencoder (tcKAE), designed to generate accurate long-term predictions even with constrained and noisy training data. This is achieved through a consistency regularization term that enforces prediction coherence across different time steps, thus enhancing the robustness and generalizability of tcKAE over existing models. We provide analytical justification for this approach based on Koopman spectral theory and empirically demonstrate tcKAE's superior performance over state-of-the-art KAE models across a variety of test cases, including simple pendulum oscillations, kinetic plasmas, fluid flows, and sea surface temperature data.
- Abstract(参考訳): 十分に高品質なデータの欠如は、高次元時空間力学系のデータ駆動モデリングにおいて、しばしば重要な課題となる。
クープマンオートエンコーダ(KAEs)は、ディープニューラルネットワーク(DNN)の表現性、オートエンコーダの次元低減能力、およびクープマン作用素のスペクトル特性を利用して、より単純で線形な力学で低次特徴空間を学習する。
しかし、KAEsの有効性は、限られたノイズの多いトレーニングデータセットによって妨げられ、一般化性が低下する。
これを解決するために,制約付き,ノイズの多いトレーニングデータであっても,正確な長期予測を生成するように設計されたTcKAE(Temporally-Consistent Koopman Autoencoder)を導入する。
これは、異なる時間ステップにわたる予測コヒーレンスを強制する一貫性の規則化項によって達成され、既存のモデルに対するtcKAEの堅牢性と一般化性を高める。
我々は, クープマンスペクトル理論に基づくこのアプローチの解析的正当性を示し, 簡単な振り子振動, 運動プラズマ, 流体流, 海面温度データを含む, 最先端KAEモデルに対するtcKAEの優れた性能を実証的に示す。
関連論文リスト
- Sparse identification of nonlinear dynamics and Koopman operators with Shallow Recurrent Decoder Networks [3.1484174280822845]
本稿では,SINDy-SHRED(SINDy-SHRED)とSINDY-SHRED(SINDy-SHRED)を併用したダイナミクスの同定について述べる。
SINDy-SHRED は Gated Recurrent Units (GRU) を用いて、センサー計測の時間的シーケンスを浅層デコーダネットワークと共にモデル化し、潜在状態空間から全フィールドを再構築する。
我々は, 合成PDEデータ, 海面温度の実環境センサ計測, 直接ビデオデータを含む系統的研究を行った。
論文 参考訳(メタデータ) (2025-01-23T02:18:13Z) - Multi-Head Self-Attending Neural Tucker Factorization [5.734615417239977]
本稿では,高次元および不完全(HDI)テンソルの学習表現に適したニューラルネットワークに基づくテンソル分解手法を提案する。
提案したMSNTucFモデルでは,観測結果の欠落を推定する上で,最先端のベンチマークモデルと比較して優れた性能を示す。
論文 参考訳(メタデータ) (2025-01-16T13:04:15Z) - Self-STORM: Deep Unrolled Self-Supervised Learning for Super-Resolution Microscopy [55.2480439325792]
我々は、シーケンス固有のモデルベースのオートエンコーダをトレーニングすることで、そのようなデータの必要性を軽減する、深層無学習の自己教師付き学習を導入する。
提案手法は, 監視対象の性能を超過する。
論文 参考訳(メタデータ) (2024-03-25T17:40:32Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
モデルの新しい設計に基づく新しい生成フレームワークであるKoopman VAEを紹介する。
クープマン理論に触発され、線形写像を用いて潜在条件事前力学を表現する。
KoVAEは、いくつかの挑戦的な合成および実世界の時系列生成ベンチマークにおいて、最先端のGANおよびVAEメソッドより優れている。
論文 参考訳(メタデータ) (2023-10-04T07:14:43Z) - Koopman Invertible Autoencoder: Leveraging Forward and Backward Dynamics
for Temporal Modeling [13.38194491846739]
我々は、Koopman Invertible Autoencoders (KIA) と呼ぶ、Koopman演算子理論に基づく新しい機械学習モデルを提案する。
KIAは、無限次元ヒルベルト空間における前方と後方のダイナミクスをモデル化することによって、システムの固有の特性を捉えている。
これにより,低次元表現を効率よく学習し,長期システムの挙動をより正確に予測することが可能になる。
論文 参考訳(メタデータ) (2023-09-19T03:42:55Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
本稿では,スパースビューCBCT再構成のための新規かつ高速な自己教師型ソリューションを提案する。
所望の減衰係数は、3次元空間座標の連続関数として表現され、完全に接続されたディープニューラルネットワークによってパラメータ化される。
ハッシュ符号化を含む学習ベースのエンコーダが採用され、ネットワークが高周波の詳細をキャプチャするのに役立つ。
論文 参考訳(メタデータ) (2022-09-29T04:06:00Z) - Predicting Physics in Mesh-reduced Space with Temporal Attention [15.054026802351146]
本稿では,トランス方式の時間的アテンションモデルを用いて,長期的依存関係をキャプチャする手法を提案する。
本手法は, 複雑な流体力学予測タスクにおいて, 競合するGNNベースラインよりも優れる。
我々のアプローチは、高次元複雑な物理課題の解決に注意に基づくシーケンスモデルの利点をもたらす道を開いたと信じている。
論文 参考訳(メタデータ) (2022-01-22T18:32:54Z) - KalmanNet: Neural Network Aided Kalman Filtering for Partially Known
Dynamics [84.18625250574853]
KalmanNetは、データから学習し、非線形力学の下でKalmanフィルタを実行するリアルタイム状態推定器である。
我々は、KalmanNetが非線形性とモデルミスマッチを克服し、古典的なフィルタリング手法より優れていることを数値的に示す。
論文 参考訳(メタデータ) (2021-07-21T12:26:46Z) - Forecasting Sequential Data using Consistent Koopman Autoencoders [52.209416711500005]
クープマン理論に関連する新しい物理学に基づく手法が導入された。
本稿では,既存の作業の多くと異なり,前方・後方のダイナミクスを生かした新しいコンシスタント・クープマン・オートエンコーダモデルを提案する。
このアプローチの鍵となるのは、一貫性のある力学と関連するクープマン作用素との相互作用を探索する新しい解析である。
論文 参考訳(メタデータ) (2020-03-04T18:24:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。