論文の概要: RASP: A Drone-based Reconfigurable Actuation and Sensing Platform Towards Ambient Intelligent Systems
- arxiv url: http://arxiv.org/abs/2403.12853v1
- Date: Tue, 19 Mar 2024 15:57:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 13:34:19.975303
- Title: RASP: A Drone-based Reconfigurable Actuation and Sensing Platform Towards Ambient Intelligent Systems
- Title(参考訳): RASP: 自律型インテリジェントシステムに向けた、ドローンによる再構成可能なアクティベーションとセンシングプラットフォーム
- Authors: Minghui Zhao, Junxi Xia, Kaiyuan Hou, Yanchen Liu, Stephen Xia, Xiaofan Jiang,
- Abstract要約: RASPは、ドローンがセンサーやアクチュエータをわずか25秒で自動的に交換することを可能にする。
RASPは、センサモジュールを物理的に交換するメカニカル層と、センサ/アクチュエータへの電力線と通信線を維持する電気層と、当社のプラットフォーム内の任意のセンサーモジュールとの共通インターフェースを維持するソフトウェア層から構成される。
RASPは、家庭、オフィス、研究室、その他の屋内環境において、様々な有用なタスクを可能にすることを実証する。
- 参考スコア(独自算出の注目度): 2.3261005827458665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Realizing consumer-grade drones that are as useful as robot vacuums throughout our homes or personal smartphones in our daily lives requires drones to sense, actuate, and respond to general scenarios that may arise. Towards this vision, we propose RASP, a modular and reconfigurable sensing and actuation platform that allows drones to autonomously swap onboard sensors and actuators in only 25 seconds, allowing a single drone to quickly adapt to a diverse range of tasks. RASP consists of a mechanical layer to physically swap sensor modules, an electrical layer to maintain power and communication lines to the sensor/actuator, and a software layer to maintain a common interface between the drone and any sensor module in our platform. Leveraging recent advances in large language and visual language models, we further introduce the architecture, implementation, and real-world deployments of a personal assistant system utilizing RASP. We demonstrate that RASP can enable a diverse range of useful tasks in home, office, lab, and other indoor settings.
- Abstract(参考訳): 家庭やスマートフォンでロボット掃除機のように便利に使える消費者向けドローンを実現するには、ドローンを感知し、アクティベートし、起こりうる一般的なシナリオに対応する必要がある。
このビジョンに向けて、モジュール式で再構成可能なセンシングおよびアクチュエータプラットフォームであるRASPを提案し、オンボードセンサーとアクチュエータをわずか25秒で自律的に交換し、単一のドローンがさまざまなタスクに迅速に適応できるようにする。
RASPは、センサモジュールを物理的に交換するメカニカル層と、センサ/アクチュエータへの電力線と通信線を維持する電気層と、当社のプラットフォーム内の任意のセンサーモジュールとの共通インターフェースを維持するソフトウェア層から構成される。
大規模言語とビジュアル言語モデルの最近の進歩を活用して、RASPを利用したパーソナルアシスタントシステムのアーキテクチャ、実装、実世界の展開をさらに導入する。
RASPは、家庭、オフィス、研究室、その他の屋内環境において、様々な有用なタスクを可能にすることを実証する。
関連論文リスト
- OptiGrasp: Optimized Grasp Pose Detection Using RGB Images for Warehouse Picking Robots [27.586777997464644]
倉庫環境では、ロボットはさまざまなオブジェクトを管理するために堅牢なピッキング機能を必要とする。
基礎モデルを活用する革新的な手法を提案し,RGB画像のみを用いた吸引把握を向上する。
我々のネットワークは実世界のアプリケーションで82.3%の成功率を達成した。
論文 参考訳(メタデータ) (2024-09-29T00:20:52Z) - Orbital AI-based Autonomous Refuelling Solution [6.776059370975249]
本稿では、ドッキングおよび軌道上サーベイシング(OOS)の主センサとしてのオンボード可視光カメラの利用を成熟させるAIベースのナビゲーションアルゴリズムの開発について述べる。
複数の畳み込みニューラルネットワークバックボーンアーキテクチャは、国際宇宙ステーション(ISS)とのドッキング操作の合成データに基づいてベンチマークされる
再給油機構の物理プロトタイプと溶液の統合を、ロボットアームを用いて実験室で検証し、バーシング手順をシミュレートする。
論文 参考訳(メタデータ) (2023-09-20T21:25:52Z) - Prompt a Robot to Walk with Large Language Models [18.214609570837403]
巨大な言語モデル(LLM)は、大規模なインターネットスケールのデータで事前訓練されている。
物理的環境から収集した数発のプロンプトを使用する新しいパラダイムを導入する。
様々なロボットと環境をまたいだ実験により、我々の手法がロボットに歩行を効果的に促すことが検証された。
論文 参考訳(メタデータ) (2023-09-18T17:50:17Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
インターネット規模の基盤モデルによって生成された言語推論セグメンテーションマスクを効果的に活用する新しいパラダイムを提案する。
提案手法は,オブジェクトのポーズを効果的かつ堅牢に知覚し,サンプル効率のよい一般化学習を可能にする。
デモは提出されたビデオで見ることができ、より包括的なデモはlink1またはlink2で見ることができます。
論文 参考訳(メタデータ) (2023-06-09T07:22:12Z) - Modality-invariant Visual Odometry for Embodied Vision [1.7188280334580197]
ビジュアルオドメトリー(VO)は、信頼性の低いGPSとコンパスセンサーの代替品である。
最近のディープVOモデルは、数百万のサンプルをトレーニングしながら、RGBや深さなどの入力モダリティの固定セットに制限されている。
本稿では,トランスフォーマーをベースとしたモダリティ不変VOアプローチを提案する。
論文 参考訳(メタデータ) (2023-04-29T21:47:12Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
本稿では,ニューラルネットワークアーキテクチャを利用したポーズ推定ソフトウェアを提案する。
我々は、低消費電力の機械学習アクセラレーターが宇宙での人工知能の活用を可能にしていることを示す。
論文 参考訳(メタデータ) (2022-04-07T08:53:18Z) - Bayesian Imitation Learning for End-to-End Mobile Manipulation [80.47771322489422]
RGB + 深度カメラのような追加のセンサー入力によるポリシーの強化は、ロボットの知覚能力を改善するための簡単なアプローチである。
畳み込みニューラルネットワークを正規化するために変分情報ボトルネックを用いることで、保持領域への一般化が向上することを示す。
提案手法は, シミュレーションと現実のギャップを埋めることと, RGBと奥行き変調をうまく融合できることを実証する。
論文 参考訳(メタデータ) (2022-02-15T17:38:30Z) - ADAPT: An Open-Source sUAS Payload for Real-Time Disaster Prediction and
Response with AI [55.41644538483948]
小型無人航空機システム(sUAS)は、多くの人道支援や災害対応作戦において顕著な構成要素となっている。
我々は,SUAS上にリアルタイムAIとコンピュータビジョンをデプロイするための,オープンソースのADAPTマルチミッションペイロードを開発した。
本研究では,河川氷の状態を監視し,破滅的な洪水現象をタイムリーに予測するための,リアルタイム・飛行中の氷分断の例を示す。
論文 参考訳(メタデータ) (2022-01-25T14:51:19Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
高速物体把握のための完全自律飛行ロボットが提案されている。
追加のサブタスクとして、我々のシステムは、表面に近い極にある気球を自律的にピアスすることができる。
我々のアプローチは、挑戦的な国際競争で検証され、優れた結果が得られました。
論文 参考訳(メタデータ) (2021-12-10T11:49:51Z) - Scalable Primitives for Generalized Sensor Fusion in Autonomous Vehicles [3.7543422202019427]
Generalized Sensor Fusion (GSF) は、センサ入力とターゲットタスクの両方がモジュラーで変更可能であるように設計されている。
これにより、AVシステムデザイナは、さまざまなセンサー構成や方法を簡単に試すことができ、異種艦隊に展開することが可能になる。
論文 参考訳(メタデータ) (2021-12-01T01:43:15Z) - VISTA 2.0: An Open, Data-driven Simulator for Multimodal Sensing and
Policy Learning for Autonomous Vehicles [131.2240621036954]
VISTAはオープンソースのデータ駆動シミュレータで、複数のタイプのセンサーを自律走行車に組み込む。
高忠実で実世界のデータセットを使用して、VISTAはRGBカメラ、3D LiDAR、イベントベースのカメラを表現し、シミュレートする。
センサタイプ毎に知覚制御ポリシーをトレーニングし,テストする能力を示し,フルスケールの自律走行車への展開を通じて,このアプローチのパワーを示す。
論文 参考訳(メタデータ) (2021-11-23T18:58:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。