論文の概要: TexTile: A Differentiable Metric for Texture Tileability
- arxiv url: http://arxiv.org/abs/2403.12961v1
- Date: Tue, 19 Mar 2024 17:59:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 13:04:26.670502
- Title: TexTile: A Differentiable Metric for Texture Tileability
- Title(参考訳): TexTile: テクスチャタイル性のための微分可能なメトリクス
- Authors: Carlos Rodriguez-Pardo, Dan Casas, Elena Garces, Jorge Lopez-Moreno,
- Abstract要約: テクスチャ画像がそれ自身でベッドできる程度を定量化するための、新しい微分可能な計量であるTexTileを紹介する。
タイル状テクスチャ合成の既存の方法は、一般的なテクスチャの品質に焦点をあてるが、テクスチャの本質的な特性の明示的な分析は欠如している。
- 参考スコア(独自算出の注目度): 10.684366243276198
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce TexTile, a novel differentiable metric to quantify the degree upon which a texture image can be concatenated with itself without introducing repeating artifacts (i.e., the tileability). Existing methods for tileable texture synthesis focus on general texture quality, but lack explicit analysis of the intrinsic repeatability properties of a texture. In contrast, our TexTile metric effectively evaluates the tileable properties of a texture, opening the door to more informed synthesis and analysis of tileable textures. Under the hood, TexTile is formulated as a binary classifier carefully built from a large dataset of textures of different styles, semantics, regularities, and human annotations.Key to our method is a set of architectural modifications to baseline pre-train image classifiers to overcome their shortcomings at measuring tileability, along with a custom data augmentation and training regime aimed at increasing robustness and accuracy. We demonstrate that TexTile can be plugged into different state-of-the-art texture synthesis methods, including diffusion-based strategies, and generate tileable textures while keeping or even improving the overall texture quality. Furthermore, we show that TexTile can objectively evaluate any tileable texture synthesis method, whereas the current mix of existing metrics produces uncorrelated scores which heavily hinders progress in the field.
- Abstract(参考訳): 本稿では,テクスチャ画像が連続するアーティファクト(タイル性)を導入することなく,それ自身と結合できる程度を定量化する,新しい微分可能な計量であるTexTileを紹介する。
タイル状テクスチャ合成の既存の方法は、一般的なテクスチャの品質に重点を置いているが、テクスチャの本質的な再現性に関する明確な分析は欠如している。
対照的に、我々のTexTileメトリックは、テクスチャのタイル状特性を効果的に評価し、タイル状テクスチャのより情報的な合成と分析に扉を開ける。
内部では、TexTileは、異なるスタイル、セマンティクス、規則性、人間のアノテーションの集合からなる大きなテクスチャのデータセットから慎重に構築されたバイナリ分類器として定式化されている。
我々は,TexTileを拡散型戦略を含む最先端のテクスチャ合成手法にプラグインし,全体のテクスチャ品質を維持したり改善したりしながら,タイル可能なテクスチャを生成することを実証した。
さらに、TexTileはタイル状テクスチャ合成法を客観的に評価できるのに対し、既存のメトリクスの混合は非相関スコアを生成し、フィールドの進行を著しく妨げていることを示す。
関連論文リスト
- RoCoTex: A Robust Method for Consistent Texture Synthesis with Diffusion Models [3.714901836138171]
メッシュに整合した一貫性とシームレスなテクスチャを生成するための頑健なテキスト・ツー・テクスチャ手法を提案する。
本手法では,SDXLや複数制御ネットなどの最先端2次元拡散モデルを用いて,構造的特徴を捉えるとともに,テクスチャの複雑な詳細を抽出する。
論文 参考訳(メタデータ) (2024-09-30T06:29:50Z) - Infinite Texture: Text-guided High Resolution Diffusion Texture Synthesis [61.189479577198846]
Infinite Textureはテキストプロンプトから任意の大きさのテクスチャ画像を生成する方法である。
本手法は,1つのテクスチャ上に拡散モデルを微調整し,その分布をモデルの出力領域に埋め込むことを学習する。
1つのGPU上で任意の解像度の出力テクスチャ画像を生成するためのスコアアグリゲーションストラテジーによって、我々の微調整拡散モデルが生成される。
論文 参考訳(メタデータ) (2024-05-13T21:53:09Z) - GenesisTex: Adapting Image Denoising Diffusion to Texture Space [15.907134430301133]
GenesisTexはテキスト記述から3次元幾何学のテクスチャを合成する新しい手法である。
我々は,各視点に対して潜在テクスチャマップを保持し,対応する視点の描画に予測ノイズを伴って更新する。
大域的整合性は、ノイズ予測ネットワーク内のスタイル整合性機構の統合によって達成される。
論文 参考訳(メタデータ) (2024-03-26T15:15:15Z) - TextureDreamer: Image-guided Texture Synthesis through Geometry-aware
Diffusion [64.49276500129092]
TextureDreamerは画像誘導型テクスチャ合成法である。
少数の入力画像から任意のカテゴリでターゲットの3D形状に光沢のあるテクスチャを転送することができる。
論文 参考訳(メタデータ) (2024-01-17T18:55:49Z) - Generating Non-Stationary Textures using Self-Rectification [70.91414475376698]
本稿では,実例に基づく非定常テクスチャ合成の課題に対処する。
本稿では,ユーザが標準画像編集ツールを使用して参照テクスチャを初めて修正する,新しい2段階のアプローチを提案する。
提案手法は「自己修正(self-rectification)」と呼ばれ、このターゲットを自動的にコヒーレントでシームレスなテクスチャに洗練する。
論文 参考訳(メタデータ) (2024-01-05T15:07:05Z) - SceneTex: High-Quality Texture Synthesis for Indoor Scenes via Diffusion
Priors [49.03627933561738]
SceneTexは、奥行き拡散前処理を用いた室内シーンの高品質でスタイルに一貫性のあるテクスチャを生成する新しい方法である。
SceneTexは3D-FRONTシーンの様々な正確なテクスチャ合成を可能にする。
論文 参考訳(メタデータ) (2023-11-28T22:49:57Z) - SeamlessGAN: Self-Supervised Synthesis of Tileable Texture Maps [3.504542161036043]
単一入力例からタイル状テクスチャマップを自動生成できるSeamlessGANを提案する。
合成問題にのみ焦点をあてた既存の方法とは対照的に,本研究は合成性とタイル性の両方に同時に取り組む。
論文 参考訳(メタデータ) (2022-01-13T18:24:26Z) - Learning Statistical Texture for Semantic Segmentation [53.7443670431132]
セマンティックセグメンテーションのための新しい統計テクスチャ学習ネットワーク(STLNet)を提案する。
STLNetは、初めて低レベルの情報の分布を分析し、それらをタスクに効率的に活用する。
1)テクスチャ関連情報を捕捉し,テクスチャの詳細を強化するためのテクスチャエンハンスモジュール(TEM),(2)ピラミッドテクスチャ特徴抽出モジュール(PTFEM)の2つのモジュールを導入し,複数のスケールから統計的テクスチャ特徴を効果的に抽出する。
論文 参考訳(メタデータ) (2021-03-06T15:05:35Z) - Region-adaptive Texture Enhancement for Detailed Person Image Synthesis [86.69934638569815]
RATE-Netは、シャープなテクスチャで人物画像を合成するための新しいフレームワークである。
提案するフレームワークは,テクスチャ強化モジュールを利用して,画像から外観情報を抽出する。
DeepFashionベンチマークデータセットで実施された実験は、既存のネットワークと比較して、我々のフレームワークの優位性を実証した。
論文 参考訳(メタデータ) (2020-05-26T02:33:21Z) - Co-occurrence Based Texture Synthesis [25.4878061402506]
本稿では,共起統計に基づいて局所的に条件付けされた完全畳み込み生成対向ネットワークを提案し,任意に大きな画像を生成する。
本手法はテクスチャ合成のための安定的で直感的で解釈可能な潜在表現を提供する。
論文 参考訳(メタデータ) (2020-05-17T08:01:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。