論文の概要: Thwarting Cybersecurity Attacks with Explainable Concept Drift
- arxiv url: http://arxiv.org/abs/2403.13023v1
- Date: Mon, 18 Mar 2024 20:20:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 21:08:57.536211
- Title: Thwarting Cybersecurity Attacks with Explainable Concept Drift
- Title(参考訳): 説明可能なコンセプトドリフトでサイバーセキュリティ攻撃を防ぐ
- Authors: Ibrahim Shaer, Abdallah Shami,
- Abstract要約: サイバーセキュリティ攻撃は、自律システムの運用に重大な脅威をもたらす。
本稿では, ドリフト特徴を特定するための特徴ドリフト記述(FDE)モジュールを提案する。
FDEは85.77 %のドリフト特性を同定し、DL適応法でその有用性を示す。
- 参考スコア(独自算出の注目度): 10.517955982799553
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cyber-security attacks pose a significant threat to the operation of autonomous systems. Particularly impacted are the Heating, Ventilation, and Air Conditioning (HVAC) systems in smart buildings, which depend on data gathered by sensors and Machine Learning (ML) models using the captured data. As such, attacks that alter the readings of these sensors can severely affect the HVAC system operations impacting residents' comfort and energy reduction goals. Such attacks may induce changes in the online data distribution being fed to the ML models, violating the fundamental assumption of similarity in training and testing data distribution. This leads to a degradation in model prediction accuracy due to a phenomenon known as Concept Drift (CD) - the alteration in the relationship between input features and the target variable. Addressing CD requires identifying the source of drift to apply targeted mitigation strategies, a process termed drift explanation. This paper proposes a Feature Drift Explanation (FDE) module to identify the drifting features. FDE utilizes an Auto-encoder (AE) that reconstructs the activation of the first layer of the regression Deep Learning (DL) model and finds their latent representations. When a drift is detected, each feature of the drifting data is replaced by its representative counterpart from the training data. The Minkowski distance is then used to measure the divergence between the altered drifting data and the original training data. The results show that FDE successfully identifies 85.77 % of drifting features and showcases its utility in the DL adaptation method under the CD phenomenon. As a result, the FDE method is an effective strategy for identifying drifting features towards thwarting cyber-security attacks.
- Abstract(参考訳): サイバーセキュリティ攻撃は、自律システムの運用に重大な脅威をもたらす。
特に影響を受けているのは、スマートビルの暖房、換気、空調(HVAC)システムで、センサーが収集したデータと、キャプチャデータを使用した機械学習(ML)モデルに依存する。
したがって、これらのセンサーの読み方を変える攻撃は、住民の快適性とエネルギー削減の目標に影響を与えるHVACシステムの運用に深刻な影響を与える可能性がある。
このような攻撃は、MLモデルに供給されるオンラインデータ配布の変化を誘発し、トレーニングとデータ配布のテストにおける類似性の基本的な前提を侵害する可能性がある。
これにより、概念ドリフト(CD)と呼ばれる現象によってモデル予測精度が低下し、入力特徴と対象変数の関係が変化する。
CDに対処するには、ターゲット緩和戦略を適用するためにドリフトの源を特定する必要がある。
本稿では, ドリフト特徴を特定するための特徴ドリフト記述(FDE)モジュールを提案する。
FDEは自動エンコーダ(AE)を利用して回帰ディープラーニング(DL)モデルの第一層の活性化を再構築し、その潜在表現を見つける。
ドリフトを検出すると、ドリフトデータの各特徴をトレーニングデータから代表データに置き換える。
ミンコフスキー距離は、変化したドリフトデータと元のトレーニングデータとのばらつきを測定するために使用される。
その結果,FDE はドリフト特性の85.77 % を同定し,CD 現象下での DL 適応法での有用性を示した。
その結果、FDE法は、サイバーセキュリティ攻撃を阻止するための漂流の特徴を識別するための効果的な戦略である。
関連論文リスト
- Towards Physically Consistent Deep Learning For Climate Model Parameterizations [46.07009109585047]
パラメータ化は、気候予測において、系統的なエラーと大きな不確実性の主な原因である。
深層学習(DL)に基づくパラメータ化は、計算に高価で高解像度のショートシミュレーションのデータに基づいて訓練されており、気候モデルを改善するための大きな可能性を示している。
本稿では,DLに基づくパラメータ化のための効率的な教師付き学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-06T10:02:49Z) - An incremental hybrid adaptive network-based IDS in Software Defined Networks to detect stealth attacks [0.0]
先進的永続脅威(Advanced Persistent Threats、APT)は、検出を回避するための幅広い戦略を実装する攻撃の一種である。
侵入検知システム(IDS)における機械学習(ML)技術は、そのような攻撃を検出するために広く用いられているが、データ分散が変化すると課題がある。
SDNにおける概念ドリフト問題に対処するために、インクリメンタルなハイブリッド適応型ネットワーク侵入検知システム(NIDS)を提案する。
論文 参考訳(メタデータ) (2024-04-01T13:33:40Z) - Logits Poisoning Attack in Federated Distillation [8.728629314547248]
FDLA(Federated Distillation, FD)を応用した中毒予防法について紹介する。
LPAがクライアントモデルの精度を効果的に損なうことを実証し、この点において確立されたベースラインアルゴリズムよりも優れていることを示す。
以上の結果から,FD設定における堅牢な防御機構の必要性が示唆された。
論文 参考訳(メタデータ) (2024-01-08T06:18:46Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Deep Metric Learning for Unsupervised Remote Sensing Change Detection [60.89777029184023]
リモートセンシング変化検出(RS-CD)は、マルチテンポラルリモートセンシング画像(MT-RSI)から関連する変化を検出することを目的とする。
既存のRS-CD法の性能は、大規模な注釈付きデータセットのトレーニングによるものである。
本稿では,これらの問題に対処可能なディープメトリック学習に基づく教師なしCD手法を提案する。
論文 参考訳(メタデータ) (2023-03-16T17:52:45Z) - Autoregressive based Drift Detection Method [0.0]
我々はADDMと呼ばれる自己回帰モデルに基づく新しい概念ドリフト検出手法を提案する。
以上の結果から,新しいドリフト検出法は最先端ドリフト検出法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-09T14:36:16Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Detecting Concept Drift With Neural Network Model Uncertainty [0.0]
不確実ドリフト検出(UDD)は、真のラベルにアクセスすることなくドリフトを検出することができる。
入力データに基づくドリフト検出とは対照的に,現在の入力データが予測モデルの特性に与える影響を考察する。
UDDは2つの合成および10の実世界のデータセットにおいて、回帰処理と分類処理の両方において、他の最先端戦略よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-07-05T08:56:36Z) - Automatic Learning to Detect Concept Drift [40.69280758487987]
誤り率の変化パターンを追跡し,コンセプトドリフトの分類を学習する新しいフレームワークであるMeta-ADDを提案する。
具体的には、トレーニングフェーズにおいて、様々なコンセプトドリフトの誤差率に基づいてメタ特徴を抽出し、その後、原型ニューラルネットワークを介してメタ検出装置を開発する。
検出フェーズでは、学習したメタ検出器が微調整され、ストリームベースのアクティブラーニングを介して対応するデータストリームに適応する。
論文 参考訳(メタデータ) (2021-05-04T11:10:39Z) - Adversarial Concept Drift Detection under Poisoning Attacks for Robust
Data Stream Mining [15.49323098362628]
本稿では,敵対的攻撃と毒殺攻撃の存在下でのロバストな概念ドリフト検出のための枠組みを提案する。
本稿では,2種類の逆流の概念と,頑健な訓練可能なドリフト検出器の分類について紹介する。
また,ロバストネスの相対損失 (Relative Loss of Robustness) についても紹介する。
論文 参考訳(メタデータ) (2020-09-20T18:46:31Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。