論文の概要: HuLP: Human-in-the-Loop for Prognosis
- arxiv url: http://arxiv.org/abs/2403.13078v2
- Date: Tue, 9 Jul 2024 12:24:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 23:31:18.830512
- Title: HuLP: Human-in-the-Loop for Prognosis
- Title(参考訳): HuLP: 予後のための人間--the-Loop
- Authors: Muhammad Ridzuan, Mai Kassem, Numan Saeed, Ikboljon Sobirov, Mohammad Yaqub,
- Abstract要約: HuLPはHuman-in-the-Loop for Prognosisモデルであり、臨床コンテキストにおける予後モデルの信頼性と解釈性を高めるために設計された。
我々は,HuLPの優位性と競争性を示すために,実世界の2つの公開医療データセットを用いて実験を行った。
- 参考スコア(独自算出の注目度): 0.8672882547905405
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper introduces HuLP, a Human-in-the-Loop for Prognosis model designed to enhance the reliability and interpretability of prognostic models in clinical contexts, especially when faced with the complexities of missing covariates and outcomes. HuLP offers an innovative approach that enables human expert intervention, empowering clinicians to interact with and correct models' predictions, thus fostering collaboration between humans and AI models to produce more accurate prognosis. Additionally, HuLP addresses the challenges of missing data by utilizing neural networks and providing a tailored methodology that effectively handles missing data. Traditional methods often struggle to capture the nuanced variations within patient populations, leading to compromised prognostic predictions. HuLP imputes missing covariates based on imaging features, aligning more closely with clinician workflows and enhancing reliability. We conduct our experiments on two real-world, publicly available medical datasets to demonstrate the superiority and competitiveness of HuLP.
- Abstract(参考訳): 本稿では,Human-in-the-Loop for Prognosis(Human-in-the-Loop for Prognosis)モデルについて紹介する。
HuLPは、人間の専門家による介入を可能にする革新的なアプローチを提供し、臨床医がモデルの予測と対話し、修正できるようにし、より正確な予後を生み出すために人間とAIモデルの協力を促進する。
加えて、HuLPは、ニューラルネットワークを活用し、欠落したデータを効果的に処理する調整済みの方法論を提供することによって、欠落するデータの課題に対処する。
従来の方法では、患者集団内のニュアンスな変化を捉えるのに苦労することが多く、予後予測の妥協につながった。
HuLPは、イメージング機能に基づいた共変体を欠いていることを示唆し、クリニックワークフローとより緊密に連携し、信頼性を高める。
我々は,HuLPの優位性と競争性を示すために,実世界の2つの公開医療データセットを用いて実験を行った。
関連論文リスト
- CauSkelNet: Causal Representation Learning for Human Behaviour Analysis [6.880536510094897]
本研究では,人間の関節動態や複雑な動作をよりよく理解するために,因果推論に基づく表現学習手法を提案する。
我々のアプローチは、人間の動作分析を前進させ、より適応的なインテリジェントヘルスケアソリューションの道を開く。
論文 参考訳(メタデータ) (2024-09-23T21:38:49Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - Addressing Data Heterogeneity in Federated Learning of Cox Proportional Hazards Models [8.798959872821962]
本稿では,フェデレーションサバイバル分析の分野,特にCox Proportional Hazards(CoxPH)モデルについて概説する。
本稿では,合成データセットと実世界のアプリケーション間のモデル精度を向上させるために,特徴ベースのクラスタリングを用いたFLアプローチを提案する。
論文 参考訳(メタデータ) (2024-07-20T18:34:20Z) - Explainable AI for Fair Sepsis Mortality Predictive Model [3.556697333718976]
本稿では、性能最適化予測モデルを学習し、転送学習プロセスを用いて、より公正なモデルを生成する方法を提案する。
我々の手法は、予測モデル内のバイアスを特定し緩和するだけでなく、医療関係者間の信頼を高める。
論文 参考訳(メタデータ) (2024-04-19T18:56:46Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Hypergraph Convolutional Networks for Fine-grained ICU Patient
Similarity Analysis and Risk Prediction [15.06049250330114]
集中治療ユニット(ICU、Intensive Care Unit)は、重篤な患者を認め、継続的な監視と治療を提供する病院の最も重要な部分の1つである。
臨床意思決定における医療従事者を支援するために,様々な患者結果予測手法が試みられている。
論文 参考訳(メタデータ) (2023-08-24T05:26:56Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Causal Inference via Nonlinear Variable Decorrelation for Healthcare
Applications [60.26261850082012]
線形および非線形共振の両方を扱う可変デコリレーション正規化器を用いた新しい手法を提案する。
我々は、モデル解釈可能性を高めるために、元の特徴に基づくアソシエーションルールマイニングを用いた新しい表現として、アソシエーションルールを採用する。
論文 参考訳(メタデータ) (2022-09-29T17:44:14Z) - Bridging the Gap Between Patient-specific and Patient-independent
Seizure Prediction via Knowledge Distillation [7.2666838978096875]
既存のアプローチは通常、てんかんの信号の高度にパーソナライズされた特性のために、患者固有の方法でモデルを訓練する。
患者固有のモデルは、蒸留された知識と追加のパーソナライズされたデータによって得られる。
提案手法を用いて,CHB-MIT sEEGデータベース上で5つの最先端の発作予測法を訓練する。
論文 参考訳(メタデータ) (2022-02-25T10:30:29Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。