論文の概要: AgentGroupChat: An Interactive Group Chat Simulacra For Better Eliciting Emergent Behavior
- arxiv url: http://arxiv.org/abs/2403.13433v2
- Date: Thu, 4 Apr 2024 07:40:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 19:14:11.998454
- Title: AgentGroupChat: An Interactive Group Chat Simulacra For Better Eliciting Emergent Behavior
- Title(参考訳): AgentGroupChat: 創発的行動を改善するための対話型グループチャットシミュラクラ
- Authors: Zhouhong Gu, Xiaoxuan Zhu, Haoran Guo, Lin Zhang, Yin Cai, Hao Shen, Jiangjie Chen, Zheyu Ye, Yifei Dai, Yan Gao, Yao Hu, Hongwei Feng, Yanghua Xiao,
- Abstract要約: 我々はAgentGroupChatを紹介した。これは集団行動を形成する上での言語の役割を解明するシミュレーションである。
我々は,グループ力学における複雑な言語使用を模倣するシミュレーション能力を示すために,AgentGroupChatに基づく4つの物語シナリオを設定した。
その結果,幅広い情報交換環境,多彩な特徴を持つ文字,高い言語的理解,戦略的適応性など,様々な要因から創発的行動が生み出すことが明らかとなった。
- 参考スコア(独自算出の注目度): 44.82972192477596
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language significantly influences the formation and evolution of Human emergent behavior, which is crucial in understanding collective intelligence within human societies. Considering that the study of how language affects human behavior needs to put it into the dynamic scenarios in which it is used, we introduce AgentGroupChat in this paper, a simulation that delves into the complex role of language in shaping collective behavior through interactive debate scenarios. Central to this simulation are characters engaging in dynamic conversation interactions. To enable simulation, we introduce the Verbal Strategist Agent, utilizing large language models to enhance interaction strategies by incorporating elements of persona and action. We set four narrative scenarios based on AgentGroupChat to demonstrate the simulation's capacity to mimic complex language use in group dynamics. Evaluations focus on aligning agent behaviors with human expectations and the emergence of collective behaviors within the simulation. Results reveal that emergent behaviors materialize from a confluence of factors: a conducive environment for extensive information exchange, characters with diverse traits, high linguistic comprehension, and strategic adaptability. During discussions on ``the impact of AI on humanity'' in AgentGroupChat simulation, philosophers commonly agreed that ``AI could enhance societal welfare with judicious limitations'' and even come to a conclusion that ``the essence of true intelligence encompasses understanding the necessity to constrain self abilities''. Additionally, in the competitive domain of casting for primary roles in films in AgentGroupChat, certain actors were ready to reduce their remuneration or accept lesser roles, motivated by their deep-seated desire to contribute to the project.
- Abstract(参考訳): 言語は人間の創発的行動の形成と進化に大きく影響し、人間の社会における集団知性を理解するのに不可欠である。
本稿では,言語が人間の行動にどう影響するかを動的シナリオに組み込む必要があることを考慮し,対話的な議論シナリオを通じて,言語が集団行動を形成する上での複雑な役割を解明するシミュレーションであるAgentGroupChatを紹介する。
このシミュレーションの中心は、動的会話の相互作用に関わる文字である。
シミュレーションを実現するために,大規模な言語モデルを用いてペルソナとアクションの要素を組み込むことでインタラクション戦略を強化するVerbal Strategist Agentを導入する。
我々は,グループ力学における複雑な言語使用を模倣するシミュレーション能力を示すために,AgentGroupChatに基づく4つの物語シナリオを設定した。
評価は, エージェント行動と人間の期待との整合性, シミュレーションにおける集団行動の出現に焦点をあてる。
その結果,幅広い情報交換環境,多彩な特徴を持つ文字,高い言語的理解,戦略的適応性など,様々な要因から創発的行動が生み出すことが明らかとなった。
エージェントGroupChatシミュレーションにおける「AIが人間に与える影響」に関する議論において、哲学者は「AIは司法的制限を伴う社会的福祉を強化することができる」と一般的に合意し、「真の知性の本質は、自己能力の制約の必要性を理解することを含む」という結論に至った。
さらに、AgentGroupChatの映画における主要役のキャスティングの競争領域では、一部の俳優は、プロジェクトに深く貢献したいという願望から、報酬を減らしたり、より少ない役を受諾する準備ができていた。
関連論文リスト
- Spontaneous Emergence of Agent Individuality through Social Interactions in LLM-Based Communities [0.0]
本稿では,Large Language Model (LLM) ベースのエージェントを用いて,ゼロからエージェントが出現することを検討する。
このマルチエージェントシミュレーションを解析することにより、社会的規範、協力、性格特性が自然に出現する方法について、貴重な新しい知見を報告する。
論文 参考訳(メタデータ) (2024-11-05T16:49:33Z) - Self-Emotion Blended Dialogue Generation in Social Simulation Agents [18.781929161272853]
本研究では,大規模言語モデル(LLM)に基づくシミュレーションフレームワークにおける対話戦略と意思決定において,自己感情がエージェントの行動にどのように影響するかを検討する。
その結果、自己感情を取り入れることで、エージェントはより人間的な対話戦略を提示できることがわかった。
エージェントが複数のトピックについて議論する仮想シミュレーション環境では,エージェントの自己感情がエージェントの意思決定プロセスに大きな影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2024-08-03T02:11:48Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - AntEval: Evaluation of Social Interaction Competencies in LLM-Driven
Agents [65.16893197330589]
大規模言語モデル(LLM)は、幅広いシナリオで人間の振る舞いを再現する能力を示した。
しかし、複雑なマルチ文字のソーシャルインタラクションを扱う能力については、まだ完全には研究されていない。
本稿では,新しいインタラクションフレームワークと評価手法を含むマルチエージェントインタラクション評価フレームワーク(AntEval)を紹介する。
論文 参考訳(メタデータ) (2024-01-12T11:18:00Z) - Agent AI: Surveying the Horizons of Multimodal Interaction [83.18367129924997]
エージェントAI(Agent AI)とは、視覚刺激や言語入力、その他の環境データを知覚できる対話型システムである。
我々は,バーチャルリアリティやシミュレートされたシーンを容易に作成し,仮想環境内に具体化されたエージェントと対話できる未来を構想する。
論文 参考訳(メタデータ) (2024-01-07T19:11:18Z) - Generative Agents: Interactive Simulacra of Human Behavior [86.1026716646289]
生成エージェントを導入し,人間の振る舞いをシミュレートする計算ソフトウェアエージェントについて紹介する。
エージェントの経験の完全な記録を格納するために,大規模言語モデルを拡張するアーキテクチャについて述べる。
The Simsにインスパイアされた対話型サンドボックス環境に生成エージェントを投入する。
論文 参考訳(メタデータ) (2023-04-07T01:55:19Z) - Few-shot Language Coordination by Modeling Theory of Mind [95.54446989205117]
我々は、数ショット$textit language coordinate$のタスクについて研究する。
リードエージェントは、言語能力の異なるエージェントの$textitpopulation$と調整する必要があります。
これは、人間のコミュニケーションの重要な構成要素であるパートナーの信念をモデル化する能力を必要とする。
論文 参考訳(メタデータ) (2021-07-12T19:26:11Z) - Imitating Interactive Intelligence [24.95842455898523]
仮想環境の簡略化を用いて、人間と自然に相互作用できる人工エージェントの設計方法を検討する。
人間とロバストに相互作用できるエージェントを構築するには、人間と対話しながらトレーニングするのが理想的です。
我々は,人間とエージェントエージェントの対話行動の相違を低減するために,逆強化学習の考え方を用いる。
論文 参考訳(メタデータ) (2020-12-10T13:55:47Z) - Generating Emotionally Aligned Responses in Dialogues using Affect
Control Theory [15.848210524718219]
感情制御理論(Affect Control Theory、ACT)は、人間と人間の相互作用に対する感情の社会的・数学的モデルである。
本研究では、ACTが感情認識型神経会話エージェントの開発にどのように役立つかを検討する。
論文 参考訳(メタデータ) (2020-03-07T19:31:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。