論文の概要: What Matters for Active Texture Recognition With Vision-Based Tactile Sensors
- arxiv url: http://arxiv.org/abs/2403.13701v1
- Date: Wed, 20 Mar 2024 16:06:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 16:18:41.921518
- Title: What Matters for Active Texture Recognition With Vision-Based Tactile Sensors
- Title(参考訳): 視覚型触覚センサを用いたアクティブテクスチャ認識の課題
- Authors: Alina Böhm, Tim Schneider, Boris Belousov, Alap Kshirsagar, Lisa Lin, Katja Doerschner, Knut Drewing, Constantin A. Rothkopf, Jan Peters,
- Abstract要約: 触覚ファブリック認識の文脈におけるアクティブサンプリング問題を定式化する。
迅速かつ信頼性の高いテクスチャ認識には,どのコンポーネントが不可欠かを検討する。
われわれのベストアプローチは5タッチ未満で90.0%に達し、視覚ベースの触覚センサが布のテクスチャ認識に極めて有効であることを強調した。
- 参考スコア(独自算出の注目度): 17.019982978396122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores active sensing strategies that employ vision-based tactile sensors for robotic perception and classification of fabric textures. We formalize the active sampling problem in the context of tactile fabric recognition and provide an implementation of information-theoretic exploration strategies based on minimizing predictive entropy and variance of probabilistic models. Through ablation studies and human experiments, we investigate which components are crucial for quick and reliable texture recognition. Along with the active sampling strategies, we evaluate neural network architectures, representations of uncertainty, influence of data augmentation, and dataset variability. By evaluating our method on a previously published Active Clothing Perception Dataset and on a real robotic system, we establish that the choice of the active exploration strategy has only a minor influence on the recognition accuracy, whereas data augmentation and dropout rate play a significantly larger role. In a comparison study, while humans achieve 66.9% recognition accuracy, our best approach reaches 90.0% in under 5 touches, highlighting that vision-based tactile sensors are highly effective for fabric texture recognition.
- Abstract(参考訳): 本稿では,視覚に基づく触覚センサをロボットの知覚や布のテクスチャの分類に活用する能動的センシング戦略について検討する。
触覚ファブリック認識の文脈におけるアクティブサンプリング問題を定式化し、予測エントロピーの最小化と確率モデルの分散に基づく情報理論探索戦略の実装を提供する。
アブレーション研究と人体実験を通じて,迅速かつ信頼性の高いテクスチャ認識に欠かせない要素について検討する。
アクティブサンプリング戦略とともに、ニューラルネットワークアーキテクチャ、不確実性の表現、データ拡張の影響、データセットの可変性を評価する。
提案手法を以前公表したActive Clothing Perception Datasetと実際のロボットシステムで評価することにより,アクティブな探索戦略の選択が認識精度にわずかに影響を与えているのに対して,データ拡張とドロップアウト率は著しく大きな役割を果たすことがわかった。
比較研究では、人間が66.9%の精度で認識できるのに対して、私たちのベストアプローチは5タッチ以下の90.0%に達し、視覚ベースの触覚センサは布のテクスチャ認識に非常に有効であることを強調した。
関連論文リスト
- A model-free approach to fingertip slip and disturbance detection for
grasp stability inference [0.0]
触覚センサを用いた握り安定性の評価手法を提案する。
我々は、アレグロハンドに搭載された高感度のウスキン触覚センサーを用いて、我々の手法を検証、検証した。
論文 参考訳(メタデータ) (2023-11-22T09:04:26Z) - A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
本稿では,DAF(Disdisrepancy Aware Framework)を提案する。
本手法は,デコーダの欠陥同定に外見に依存しないキューを利用して,その合成外観への依存を緩和する。
単純な合成戦略の下では,既存の手法を大きなマージンで上回り,また,最先端のローカライゼーション性能も達成している。
論文 参考訳(メタデータ) (2023-10-11T15:21:40Z) - Automatic Sensor-free Affect Detection: A Systematic Literature Review [0.0]
本稿では,センサレス感情検出に関する総合的な文献レビューを行う。
この分野の明らかな成熟度は、モデルの一貫した性能によって証明されているにもかかわらず、将来の研究には十分な範囲がある。
モデル開発プラクティスやメソッドの洗練も必要です。
論文 参考訳(メタデータ) (2023-10-11T13:24:27Z) - A Real-time Human Pose Estimation Approach for Optimal Sensor Placement
in Sensor-based Human Activity Recognition [63.26015736148707]
本稿では,人間の行動認識に最適なセンサ配置の課題を解決するための新しい手法を提案する。
得られた骨格データは、最適なセンサ位置を特定するためのユニークな戦略を提供する。
本研究は,センサ配置の視覚的手法が従来のディープラーニング手法と同等の結果をもたらすことを示唆している。
論文 参考訳(メタデータ) (2023-07-06T10:38:14Z) - Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances [76.34037366117234]
ロボット制御ジェスチャー(RoCoG-v2)と呼ばれる新しいデータセットを導入する。
データセットは7つのジェスチャークラスの実ビデオと合成ビデオの両方で構成されている。
我々は,最先端の行動認識とドメイン適応アルゴリズムを用いて結果を示す。
論文 参考訳(メタデータ) (2023-03-17T23:23:55Z) - Learning to Detect Slip through Tactile Estimation of the Contact Force Field and its Entropy [6.739132519488627]
本研究では,スリップ検出をリアルタイムで連続的に行う物理インフォームド・データ駆動方式を提案する。
我々は、光学式触覚センサーであるGelSight Miniを、カスタムデザインのグリップに装着して、触覚データを収集する。
その結果,最高の分類アルゴリズムは95.61%の精度が得られることがわかった。
論文 参考訳(メタデータ) (2023-03-02T03:16:21Z) - Information-Theoretic Odometry Learning [83.36195426897768]
生体計測推定を目的とした学習動機付け手法のための統合情報理論フレームワークを提案する。
提案フレームワークは情報理論言語の性能評価と理解のためのエレガントなツールを提供する。
論文 参考訳(メタデータ) (2022-03-11T02:37:35Z) - A high performance fingerprint liveness detection method based on
quality related features [66.41574316136379]
このシステムは、10,500枚以上の実画像と偽画像からなる非常に難しいデータベースでテストされている。
提案手法はマルチシナリオデータセットに対して堅牢であることが証明され、全体の90%が正しく分類されたサンプルである。
論文 参考訳(メタデータ) (2021-11-02T21:09:39Z) - Spatio-temporal Attention Model for Tactile Texture Recognition [25.06942319117782]
触覚テクスチャ認識のための新しい時空間注意モデル(STAM)を提案する。
提案したSTAMは,それぞれの触覚テクスチャの空間的焦点と触覚シーケンスの時間的相関の両方に注意を払っている。
100種類の異なる布のテクスチャを識別する実験では,空間的,時間的に選択的な注意が認識精度を大幅に向上させた。
論文 参考訳(メタデータ) (2020-08-10T22:32:34Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。