論文の概要: Probabilistic Forecasting with Stochastic Interpolants and Föllmer Processes
- arxiv url: http://arxiv.org/abs/2403.13724v1
- Date: Wed, 20 Mar 2024 16:33:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 16:08:57.425271
- Title: Probabilistic Forecasting with Stochastic Interpolants and Föllmer Processes
- Title(参考訳): 確率補間子とフェルマー過程による確率予測
- Authors: Yifan Chen, Mark Goldstein, Mengjian Hua, Michael S. Albergo, Nicholas M. Boffi, Eric Vanden-Eijnden,
- Abstract要約: 生成モデルに基づく動的システムの確率的予測のためのフレームワークを提案する。
このSDEのドリフトと拡散係数は訓練後に調整できることを示し、推定誤差の影響を最小限に抑える特定の選択がF"ollmerプロセスを与えることを示した。
- 参考スコア(独自算出の注目度): 18.344934424278048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a framework for probabilistic forecasting of dynamical systems based on generative modeling. Given observations of the system state over time, we formulate the forecasting problem as sampling from the conditional distribution of the future system state given its current state. To this end, we leverage the framework of stochastic interpolants, which facilitates the construction of a generative model between an arbitrary base distribution and the target. We design a fictitious, non-physical stochastic dynamics that takes as initial condition the current system state and produces as output a sample from the target conditional distribution in finite time and without bias. This process therefore maps a point mass centered at the current state onto a probabilistic ensemble of forecasts. We prove that the drift coefficient entering the stochastic differential equation (SDE) achieving this task is non-singular, and that it can be learned efficiently by square loss regression over the time-series data. We show that the drift and the diffusion coefficients of this SDE can be adjusted after training, and that a specific choice that minimizes the impact of the estimation error gives a F\"ollmer process. We highlight the utility of our approach on several complex, high-dimensional forecasting problems, including stochastically forced Navier-Stokes and video prediction on the KTH and CLEVRER datasets.
- Abstract(参考訳): 生成モデルに基づく動的システムの確率的予測のためのフレームワークを提案する。
システム状態の経時的観察を前提として,将来のシステム状態の条件分布からのサンプリングとして予測問題を定式化する。
この目的のために、任意の基底分布と対象の間の生成モデルの構築を容易にする確率補間器の枠組みを利用する。
我々は、現在のシステム状態の初期条件として、有限時間かつバイアスのないターゲット条件分布からサンプルを出力する、架空の非物理的確率力学を設計する。
この過程は、現在の状態中心の点質量を予測の確率的アンサンブルにマッピングする。
この課題を達成する確率微分方程式(SDE)に入るドリフト係数は非特異であり、時系列データ上での2乗損失回帰により効率よく学習できることを証明した。
このSDEのドリフトと拡散係数は訓練後に調整できることを示し、推定誤差の影響を最小限に抑える特定の選択がF\"ollmerプロセスを与えることを示した。
我々は,KTHおよびCLEVRERデータセット上で,統計的に強制されたNavier-Stokesやビデオ予測など,複雑で高次元な予測問題に対するアプローチの有用性を強調した。
関連論文リスト
- ProGen: Revisiting Probabilistic Spatial-Temporal Time Series Forecasting from a Continuous Generative Perspective Using Stochastic Differential Equations [18.64802090861607]
ProGen Proは、不確実性を管理しながら依存関係を効果的にキャプチャする堅牢なソリューションを提供する。
4つのベンチマークトラフィックデータセットの実験により、ProGen Proは最先端の決定論的確率モデルより優れていることが示された。
論文 参考訳(メタデータ) (2024-11-02T14:37:30Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - User-defined Event Sampling and Uncertainty Quantification in Diffusion
Models for Physical Dynamical Systems [49.75149094527068]
拡散モデルを用いて予測を行い,カオス力学系に対する不確かさの定量化が可能であることを示す。
本研究では,雑音レベルが低下するにつれて真の分布に収束する条件付きスコア関数の確率的近似法を開発する。
推論時に非線形ユーザ定義イベントを条件付きでサンプリングすることができ、分布の尾部からサンプリングした場合でもデータ統計と一致させることができる。
論文 参考訳(メタデータ) (2023-06-13T03:42:03Z) - Interpretable reduced-order modeling with time-scale separation [9.889399863931676]
高次元の偏微分方程式(PDE)は計算物理学や工学でよく見られる。
本稿では,関連する時間スケールの識別を自動化するデータ駆動方式を提案する。
このデータ駆動型スキームは,線形ODEのシステムを分解する独立プロセスを自動的に学習できることを示す。
論文 参考訳(メタデータ) (2023-03-03T19:23:59Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2022-06-16T06:13:53Z) - Distributional Gradient Boosting Machines [77.34726150561087]
私たちのフレームワークはXGBoostとLightGBMをベースにしています。
我々は,このフレームワークが最先端の予測精度を実現することを示す。
論文 参考訳(メタデータ) (2022-04-02T06:32:19Z) - Flow-based Spatio-Temporal Structured Prediction of Motion Dynamics [21.24885597341643]
条件付き流れ (CNF) は、高次元と相互相関を持つ複雑な分布を表現できるフレキシブルな生成モデルである。
本研究では,時間的入力特徴の出力を自己回帰的に正規化する新しい手法としてMotionFlowを提案する。
本稿では,予測,動き予測時系列予測,二分節分割などのタスクに本手法を適用した。
論文 参考訳(メタデータ) (2021-04-09T14:30:35Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。