Sampling Audit Evidence Using a Naive Bayes Classifier
- URL: http://arxiv.org/abs/2403.14069v1
- Date: Thu, 21 Mar 2024 01:35:03 GMT
- Title: Sampling Audit Evidence Using a Naive Bayes Classifier
- Authors: Guang-Yih Sheu, Nai-Ru Liu,
- Abstract summary: This study advances sampling techniques by integrating machine learning with sampling.
Machine learning integration helps avoid sampling bias, keep randomness and variability, and target risker samples.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Taiwan's auditors have suffered from processing excessive audit data, including drawing audit evidence. This study advances sampling techniques by integrating machine learning with sampling. This machine learning integration helps avoid sampling bias, keep randomness and variability, and target risker samples. We first classify data using a Naive Bayes classifier into some classes. Next, a user-based, item-based, or hybrid approach is employed to draw audit evidence. The representativeness index is the primary metric for measuring its representativeness. The user-based approach samples data symmetric around the median of a class as audit evidence. It may be equivalent to a combination of monetary and variable samplings. The item-based approach represents asymmetric sampling based on posterior probabilities for obtaining risky samples as audit evidence. It may be identical to a combination of non-statistical and monetary samplings. Auditors can hybridize those user-based and item-based approaches to balance representativeness and riskiness in selecting audit evidence. Three experiments show that sampling using machine learning integration has the benefits of drawing unbiased samples, handling complex patterns, correlations, and unstructured data, and improving efficiency in sampling big data. However, the limitations are the classification accuracy output by machine learning algorithms and the range of prior probabilities.
Related papers
- Which Pretrain Samples to Rehearse when Finetuning Pretrained Models? [60.59376487151964]
Fine-tuning pretrained models on specific tasks is now the de facto approach for text and vision tasks.
A known pitfall of this approach is the forgetting of pretraining knowledge that happens during finetuning.
We propose a novel sampling scheme, mix-cd, that identifies and prioritizes samples that actually face forgetting.
arXiv Detail & Related papers (2024-02-12T22:32:12Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - A Brief Tutorial on Sample Size Calculations for Fairness Audits [6.66743248310448]
This tutorial provides guidance on how to determine the required subgroup sample sizes for a fairness audit.
Our findings are applicable to audits of binary classification models and multiple fairness metrics derived as summaries of the confusion matrix.
arXiv Detail & Related papers (2023-12-07T22:59:12Z) - How adversarial attacks can disrupt seemingly stable accurate classifiers [76.95145661711514]
Adversarial attacks dramatically change the output of an otherwise accurate learning system using a seemingly inconsequential modification to a piece of input data.
Here, we show that this may be seen as a fundamental feature of classifiers working with high dimensional input data.
We introduce a simple generic and generalisable framework for which key behaviours observed in practical systems arise with high probability.
arXiv Detail & Related papers (2023-09-07T12:02:00Z) - On the Universal Adversarial Perturbations for Efficient Data-free
Adversarial Detection [55.73320979733527]
We propose a data-agnostic adversarial detection framework, which induces different responses between normal and adversarial samples to UAPs.
Experimental results show that our method achieves competitive detection performance on various text classification tasks.
arXiv Detail & Related papers (2023-06-27T02:54:07Z) - Efficient Failure Pattern Identification of Predictive Algorithms [15.02620042972929]
We propose a human-machine collaborative framework that consists of a team of human annotators and a sequential recommendation algorithm.
The results empirically demonstrate the competitive performance of our framework on multiple datasets at various signal-to-noise ratios.
arXiv Detail & Related papers (2023-06-01T14:54:42Z) - Provable Robustness for Streaming Models with a Sliding Window [51.85182389861261]
In deep learning applications such as online content recommendation and stock market analysis, models use historical data to make predictions.
We derive robustness certificates for models that use a fixed-size sliding window over the input stream.
Our guarantees hold for the average model performance across the entire stream and are independent of stream size, making them suitable for large data streams.
arXiv Detail & Related papers (2023-03-28T21:02:35Z) - Holistic Approach to Measure Sample-level Adversarial Vulnerability and
its Utility in Building Trustworthy Systems [17.707594255626216]
Adversarial attack perturbs an image with an imperceptible noise, leading to incorrect model prediction.
We propose a holistic approach for quantifying adversarial vulnerability of a sample by combining different perspectives.
We demonstrate that by reliably estimating adversarial vulnerability at the sample level, it is possible to develop a trustworthy system.
arXiv Detail & Related papers (2022-05-05T12:36:17Z) - Achieving Representative Data via Convex Hull Feasibility Sampling
Algorithms [35.29582673348303]
Sampling biases in training data are a major source of algorithmic biases in machine learning systems.
We present adaptive sampling methods to determine, with high confidence, whether it is possible to assemble a representative dataset from the given data sources.
arXiv Detail & Related papers (2022-04-13T23:14:05Z) - Sampling Bias Correction for Supervised Machine Learning: A Bayesian
Inference Approach with Practical Applications [0.0]
We discuss a problem where a dataset might be subject to intentional sample bias such as label imbalance.
We then apply this solution to binary logistic regression, and discuss scenarios where a dataset might be subject to intentional sample bias.
This technique is widely applicable for statistical inference on big data, from the medical sciences to image recognition to marketing.
arXiv Detail & Related papers (2022-03-11T20:46:37Z) - Visualizing Classifier Adjacency Relations: A Case Study in Speaker
Verification and Voice Anti-Spoofing [72.4445825335561]
We propose a simple method to derive 2D representation from detection scores produced by an arbitrary set of binary classifiers.
Based upon rank correlations, our method facilitates a visual comparison of classifiers with arbitrary scores.
While the approach is fully versatile and can be applied to any detection task, we demonstrate the method using scores produced by automatic speaker verification and voice anti-spoofing systems.
arXiv Detail & Related papers (2021-06-11T13:03:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.