論文の概要: Isotropic Gaussian Splatting for Real-Time Radiance Field Rendering
- arxiv url: http://arxiv.org/abs/2403.14244v1
- Date: Thu, 21 Mar 2024 09:02:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 14:57:51.291054
- Title: Isotropic Gaussian Splatting for Real-Time Radiance Field Rendering
- Title(参考訳): 実時間ラジアン場レンダリングのための等方的ガウス散乱
- Authors: Yuanhao Gong, Lantao Yu, Guanghui Yue,
- Abstract要約: 提案手法は, 3次元再構成, ビュー合成, 動的オブジェクトモデリングなど, 広範囲の応用に適用できる。
提案手法は, 幾何表現精度を損なうことなく, 約bf100倍高速であることを確認した。
- 参考スコア(独自算出の注目度): 15.498640737050412
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The 3D Gaussian splatting method has drawn a lot of attention, thanks to its high performance in training and high quality of the rendered image. However, it uses anisotropic Gaussian kernels to represent the scene. Although such anisotropic kernels have advantages in representing the geometry, they lead to difficulties in terms of computation, such as splitting or merging two kernels. In this paper, we propose to use isotropic Gaussian kernels to avoid such difficulties in the computation, leading to a higher performance method. The experiments confirm that the proposed method is about {\bf 100X} faster without losing the geometry representation accuracy. The proposed method can be applied in a large range applications where the radiance field is needed, such as 3D reconstruction, view synthesis, and dynamic object modeling.
- Abstract(参考訳): 3Dガウススプラッティング法は、訓練における高い性能とレンダリング画像の品質のおかげで、多くの注目を集めている。
しかし、シーンを表現するために異方性ガウス核を用いる。
このような異方性カーネルは幾何学を表現するのに利点があるが、2つのカーネルの分割やマージといった計算の難しさに繋がる。
本稿では,等方性ガウスカーネルを用いて計算の困難を回避し,高い性能を実現することを提案する。
実験により,提案手法は幾何表現精度を損なわずに約100倍高速であることが確認された。
提案手法は, 3次元再構成, ビュー合成, 動的オブジェクトモデリングなど, 放射場が必要な広い範囲のアプリケーションに適用できる。
関連論文リスト
- GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views [67.34073368933814]
スパースビューカメラ設定下での高解像度画像レンダリングのための一般化可能なガウススプラッティング手法を提案する。
我々は,人間のみのデータや人景データに基づいてガウスパラメータ回帰モジュールをトレーニングし,深度推定モジュールと共同で2次元パラメータマップを3次元空間に引き上げる。
いくつかのデータセットに対する実験により、我々の手法はレンダリング速度を超越しながら最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-11-18T08:18:44Z) - Structure Consistent Gaussian Splatting with Matching Prior for Few-shot Novel View Synthesis [28.3325478008559]
SCGaussian, structure Consistent Gaussian Splatting method using matching priors to learn 3D consistent scene structure。
シーン構造を2つの折り畳みで最適化する: 幾何学の描画とより重要なのは、ガウス原始体の位置である。
前方, 周囲, 複雑な大規模シーンにおける実験により, 最先端性能と高効率性によるアプローチの有効性が示された。
論文 参考訳(メタデータ) (2024-11-06T03:28:06Z) - 2DGH: 2D Gaussian-Hermite Splatting for High-quality Rendering and Better Geometry Reconstruction [7.787937866297091]
2D Gaussian Splattingは3D再構成において重要な方法として最近出現した。
本稿では,ガウススプラッティングにおける新しいプリミティブとしてガウス・ハーマイトカーネルを提案する。
ガウス・ハーマイト核の幾何再構成と新規ビュー合成における異常な性能を示す実験を行った。
論文 参考訳(メタデータ) (2024-08-30T03:04:11Z) - GaussianForest: Hierarchical-Hybrid 3D Gaussian Splatting for Compressed Scene Modeling [40.743135560583816]
本稿では,ハイブリッド3Dガウスの森として景観を階層的に表現するガウス・フォレスト・モデリング・フレームワークを紹介する。
実験により、ガウス・フォレストは同等の速度と品質を維持するだけでなく、圧縮速度が10倍を超えることが示されている。
論文 参考訳(メタデータ) (2024-06-13T02:41:11Z) - RaDe-GS: Rasterizing Depth in Gaussian Splatting [32.38730602146176]
Gaussian Splatting (GS) は、高品質でリアルタイムなレンダリングを実現するために、新しいビュー合成に非常に効果的であることが証明されている。
本研究は,DTUデータセット上のNeuraLangeloに匹敵するチャムファー距離誤差を導入し,元の3D GS法と同様の計算効率を維持する。
論文 参考訳(メタデータ) (2024-06-03T15:56:58Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3次元ガウススプラッティング(3DGS)は画像のレンダリングと表面再構成において有望な結果を示した。
本稿では,Sparse-viewトモグラフィ再構成のための3DGSベースのフレームワークであるR2$-Gaussianを紹介する。
論文 参考訳(メタデータ) (2024-05-31T08:39:02Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質で適応的な表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - GaussianCube: A Structured and Explicit Radiance Representation for 3D Generative Modeling [55.05713977022407]
構造的かつ完全明快な放射率表現を導入し、3次元生成モデリングを大幅に促進する。
我々はまず,新しい密度制約付きガウス適合アルゴリズムを用いてガウスキューブを導出する。
非条件およびクラス条件オブジェクト生成、デジタルアバター生成、テキスト・トゥ・3Dによる実験は、我々のモデル合成が最先端の生成結果を達成することを示す。
論文 参考訳(メタデータ) (2024-03-28T17:59:50Z) - Mesh-based Gaussian Splatting for Real-time Large-scale Deformation [58.18290393082119]
ユーザがリアルタイムで大きな変形で暗黙の表現を直接変形または操作することは困難である。
我々は,インタラクティブな変形を可能にする新しいGSベースの手法を開発した。
提案手法は,高いフレームレートで良好なレンダリング結果を維持しつつ,高品質な再構成と効率的な変形を実現する。
論文 参考訳(メタデータ) (2024-02-07T12:36:54Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。