論文の概要: Learning from Noisy Labels via Conditional Distributionally Robust Optimization
- arxiv url: http://arxiv.org/abs/2411.17113v1
- Date: Tue, 26 Nov 2024 05:03:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:34:17.771087
- Title: Learning from Noisy Labels via Conditional Distributionally Robust Optimization
- Title(参考訳): 条件分布ロバスト最適化による雑音ラベルからの学習
- Authors: Hui Guo, Grace Y. Yi, Boyu Wang,
- Abstract要約: クラウドソーシングは、大規模なデータセットをラベル付けするための実用的なソリューションとして現れました。
これは、様々なレベルの専門知識を持つアノテータからのノイズの多いラベルによって、正確なモデルを学習する上で大きな課題となる。
- 参考スコア(独自算出の注目度): 5.85767711644773
- License:
- Abstract: While crowdsourcing has emerged as a practical solution for labeling large datasets, it presents a significant challenge in learning accurate models due to noisy labels from annotators with varying levels of expertise. Existing methods typically estimate the true label posterior, conditioned on the instance and noisy annotations, to infer true labels or adjust loss functions. These estimates, however, often overlook potential misspecification in the true label posterior, which can degrade model performances, especially in high-noise scenarios. To address this issue, we investigate learning from noisy annotations with an estimated true label posterior through the framework of conditional distributionally robust optimization (CDRO). We propose formulating the problem as minimizing the worst-case risk within a distance-based ambiguity set centered around a reference distribution. By examining the strong duality of the formulation, we derive upper bounds for the worst-case risk and develop an analytical solution for the dual robust risk for each data point. This leads to a novel robust pseudo-labeling algorithm that leverages the likelihood ratio test to construct a pseudo-empirical distribution, providing a robust reference probability distribution in CDRO. Moreover, to devise an efficient algorithm for CDRO, we derive a closed-form expression for the empirical robust risk and the optimal Lagrange multiplier of the dual problem, facilitating a principled balance between robustness and model fitting. Our experimental results on both synthetic and real-world datasets demonstrate the superiority of our method.
- Abstract(参考訳): クラウドソーシングは大規模なデータセットをラベル付けするための実用的なソリューションとして登場したが、さまざまなレベルの専門知識を持つアノテータによるノイズの多いラベルによる正確なモデル学習において、大きな課題が提示されている。
既存のメソッドは通常、真のラベルを推測したり、損失関数を調整するために、インスタンスに条件付けされた真のラベルの後部とノイズの多いアノテーションを推定する。
しかしながら、これらの推定は、特に高雑音のシナリオにおいて、モデル性能を劣化させることができる真のラベルの後部における潜在的な不特定性を見落としていることが多い。
この問題に対処するために,条件付き分布ロバスト最適化(CDRO)の枠組みを用いて,真のラベル後部を推定したノイズの多いアノテーションからの学習について検討する。
本稿では,参照分布を中心に設定された距離ベースあいまいさにおいて,最悪のケースリスクを最小限に抑えるものとして,問題を定式化することを提案する。
定式化の強い双対性を調べることにより、最悪の場合のリスクに対する上限を導出し、各データポイントに対する二重ロバストリスクに対する解析解を開発する。
これは、確率比テストを利用して擬似経験分布を構築し、CDROにおける堅牢な参照確率分布を提供する、新しいロバストな擬似ラベルアルゴリズムをもたらす。
さらに、CDROの効率的なアルゴリズムを考案するために、経験的ロバストリスクと双対問題の最適ラグランジュ乗算器に対する閉形式式を導出し、ロバストネスとモデルフィッティングの原理的バランスを図った。
合成と実世界の両方のデータセットに対する実験結果から,本手法の優位性を実証した。
関連論文リスト
- Distributionally and Adversarially Robust Logistic Regression via Intersecting Wasserstein Balls [8.720733751119994]
逆堅牢最適化(Adversarially robust optimization, ARO)は、テスト中に敵の攻撃に対して防御する訓練モデルのデファクトスタンダードとなっている。
その頑丈さにもかかわらず、これらのモデルはしばしば過度なオーバーフィットに悩まされる。
学習における経験的分布を, (i) あいまいさ集合内の最悪のケース分布, (ii) 補助的データセットから派生した経験的分布の混合に置き換える2つの方法を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:59:37Z) - Non-Convex Robust Hypothesis Testing using Sinkhorn Uncertainty Sets [18.46110328123008]
非破壊仮説テスト問題に対処する新しい枠組みを提案する。
目標は、最大数値リスクを最小限に抑える最適な検出器を探すことである。
論文 参考訳(メタデータ) (2024-03-21T20:29:43Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
我々は、様々な武器の報酬間の経験的ギャップに基づいて、あらゆるラウンドで腕を拒絶できる真に適応的なアルゴリズムであるsredを提示する。
特に、様々な武器の報酬の間の経験的ギャップに基づいて、あらゆるラウンドで腕を拒絶できる真に適応的なアルゴリズムであるsredを提示する。
論文 参考訳(メタデータ) (2023-12-19T13:17:43Z) - Distributionally Robust Skeleton Learning of Discrete Bayesian Networks [9.46389554092506]
我々は、潜在的に破損したデータから一般的な離散ベイズネットワークの正確なスケルトンを学習する問題を考察する。
本稿では,有界ワッサーシュタイン距離(KL)における分布群に対する最も有害なリスクを,経験的分布へのKL分散を最適化することを提案する。
本稿では,提案手法が標準正規化回帰手法と密接に関連していることを示す。
論文 参考訳(メタデータ) (2023-11-10T15:33:19Z) - Binary Classification with Confidence Difference [100.08818204756093]
本稿では,信頼性差分法 (ConfDiff) という,弱教師付き二項分類問題について考察する。
本稿では,この問題に対処するためのリスク一貫性のあるアプローチを提案し,推定誤差が最適収束率と一致することを示す。
また,整合性や収束率も証明されたオーバーフィッティング問題を緩和するためのリスク補正手法も導入する。
論文 参考訳(メタデータ) (2023-10-09T11:44:50Z) - The Decaying Missing-at-Random Framework: Doubly Robust Causal Inference
with Partially Labeled Data [10.021381302215062]
現実のシナリオでは、データ収集の制限によって部分的にラベル付けされたデータセットが生成されることが多く、信頼性の高い因果推論の描画が困難になる。
半パラメトリック(SS)や欠落したデータ文学における従来のアプローチは、これらの複雑さを適切に扱えないため、偏りのある見積もりにつながる可能性がある。
このフレームワークは、高次元設定における欠落した結果に対処し、選択バイアスを考慮に入れます。
論文 参考訳(メタデータ) (2023-05-22T07:37:12Z) - Distributionally Robust Model-Based Offline Reinforcement Learning with
Near-Optimal Sample Complexity [39.886149789339335]
オフライン強化学習は、積極的に探索することなく、履歴データから意思決定を行うことを学習することを目的としている。
環境の不確実性や変動性から,デプロイされた環境が,ヒストリデータセットの収集に使用される名目上のものから逸脱した場合でも,良好に機能するロバストなポリシーを学ぶことが重要である。
オフラインRLの分布的ロバストな定式化を考察し、有限水平および無限水平の両方でクルバック・リーブラー発散によって指定された不確実性セットを持つロバストマルコフ決定過程に着目する。
論文 参考訳(メタデータ) (2022-08-11T11:55:31Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
可分バナッハ空間上で定義された収縮作用素の定点を推定する問題について検討する。
演算子欠陥と推定誤差の両方に対して漸近的でない境界を確立する。
論文 参考訳(メタデータ) (2022-01-21T02:46:57Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
本稿では,ノイズラベルをインスタンスに明示的に関連付ける,単純かつ普遍的な確率モデルを提案する。
合成および実世界のラベルノイズを用いたデータセット実験により,提案手法がロバスト性に大きな改善をもたらすことを確認した。
論文 参考訳(メタデータ) (2021-01-14T05:43:51Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
各サンプルに割り当てられた擬似ラベルの信頼性を推定・活用し,ノイズラベルの影響を緩和する。
不確実性に基づく最適化は大幅な改善をもたらし、ベンチマークデータセットにおける最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2020-12-16T04:09:04Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。