論文の概要: Attention-Driven Reasoning: Unlocking the Potential of Large Language Models
- arxiv url: http://arxiv.org/abs/2403.14932v2
- Date: Fri, 5 Apr 2024 10:15:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-08 18:06:16.498480
- Title: Attention-Driven Reasoning: Unlocking the Potential of Large Language Models
- Title(参考訳): 注意駆動推論: 大規模言語モデルの可能性を解き放つ
- Authors: Bingli Liao, Danilo Vasconcellos Vargas,
- Abstract要約: 本稿では,注意機構の最適化を通じて,大規模言語モデルの推論を強化する新しい手法を提案する。
非意味トークンによる注意分布の非効率性を同定し、歪んだ分布を再均衡させるアルゴリズムを提案する。
我々の実験は、特に非STEM質問に対して、推論能力を大幅に改善したことを示した。
- 参考スコア(独自算出の注目度): 5.801044612920816
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have shown remarkable capabilities, but their reasoning abilities and underlying mechanisms remain poorly understood. We present a novel approach to enhance LLMs' reasoning through attention mechanism optimization, without additional training data. We identify inefficiencies in the attention distribution caused by non-semantic tokens and propose an algorithm to re-balance the skewed distribution, enabling the model to abstract more nuanced knowledge. Our experiments demonstrate significantly improved reasoning capabilities, particularly for non-STEM questions. We provide insights into the role of attention patterns in LLMs' reasoning and propose a method to enhance these abilities, paving the way for more powerful and versatile language models.
- Abstract(参考訳): 大きな言語モデル(LLM)は目覚ましい能力を示しているが、その推論能力と基盤となるメカニズムはいまだによく分かっていない。
本稿では,注意機構の最適化によるLCMの推論を,追加のトレーニングデータなしで向上させる新しい手法を提案する。
非意味的トークンによる注意分布の非効率性を同定し、歪んだ分布を再バランスさせるアルゴリズムを提案し、よりニュアンスな知識を抽象化できるようにする。
我々の実験は、特に非STEM質問に対して、推論能力を大幅に改善したことを示した。
LLMの推論における注意パターンの役割に関する洞察を提供し、これらの能力を高める手法を提案し、より強力で汎用的な言語モデルを構築する。
関連論文リスト
- EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - Interpreting and Improving Large Language Models in Arithmetic Calculation [72.19753146621429]
大規模言語モデル(LLM)は、多くのアプリケーションにまたがる顕著な可能性を示している。
本研究では,LLMが計算を行う特定のメカニズムを明らかにする。
LLMの計算性能を高めるために、これらの必須ヘッド/MLPを選択的に微調整する潜在的な利点について検討する。
論文 参考訳(メタデータ) (2024-09-03T07:01:46Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
本稿では,高度に訓練された高密度FFNを余分なサブネットワークに分解する新しいアプローチであるFacterLLMを紹介する。
FactorLLMは、最大85%のモデル性能を確保しながら、推論速度を30%以上増加させながら、ソースモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-15T16:45:16Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - A Survey on Efficient Inference for Large Language Models [25.572035747669275]
大きな言語モデル(LLM)は、様々なタスクにまたがる顕著なパフォーマンスのために、広く注目を集めている。
LLM推論のかなりの計算とメモリ要件は、リソース制約のあるシナリオへの展開に困難をもたらす。
本稿では,LLMの効率的な推論について,既存の文献を包括的に調査する。
論文 参考訳(メタデータ) (2024-04-22T15:53:08Z) - Attention is Naturally Sparse with Gaussian Distributed Input [8.602260591839318]
本研究では,Large Language Models (LLMs) における注意点の空間性に関する厳密な理論的解析を行った。
我々の主な貢献は、空間が注意機構にどのように現れるかに関する詳細な理論的考察を提供することであり、計算貯蓄とモデルの有効性の間の潜在的なトレードオフに関する洞察を提供する。
論文 参考訳(メタデータ) (2024-04-03T12:37:34Z) - Towards Modeling Learner Performance with Large Language Models [7.002923425715133]
本稿では,LLMのパターン認識とシーケンスモデリング機能が,知識追跡の領域にまで拡張できるかどうかを検討する。
ゼロショットプロンプト(ゼロショットプロンプト)とモデル微調整(モデル微調整)の2つの手法と,既存のLLM以外の知識追跡手法を比較した。
LLMベースのアプローチは最先端のパフォーマンスを達成しないが、微調整のLLMは素早いベースラインモデルの性能を上回り、標準的なベイズ的知識追跡手法と同等に機能する。
論文 参考訳(メタデータ) (2024-02-29T14:06:34Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - LLMs for Relational Reasoning: How Far are We? [8.840750655261251]
大規模言語モデル(LLM)は、下流タスクで最先端のパフォーマンスを達成することで、多くの領域に革命をもたらした。
近年の取り組みにより,LSMは逐次決定問題の解決に乏しいことが示されている。
論文 参考訳(メタデータ) (2024-01-17T08:22:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。