Learning Topological Representations for Deep Image Understanding
- URL: http://arxiv.org/abs/2403.15361v1
- Date: Fri, 22 Mar 2024 17:23:37 GMT
- Title: Learning Topological Representations for Deep Image Understanding
- Authors: Xiaoling Hu,
- Abstract summary: We propose novel representations of topological structures in a deep learning framework.
We leverage the mathematical tools from topological data analysis to develop principled methods for better segmentation and uncertainty estimation.
- Score: 8.698159165261542
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In many scenarios, especially biomedical applications, the correct delineation of complex fine-scaled structures such as neurons, tissues, and vessels is critical for downstream analysis. Despite the strong predictive power of deep learning methods, they do not provide a satisfactory representation of these structures, thus creating significant barriers in scalable annotation and downstream analysis. In this dissertation, we tackle such challenges by proposing novel representations of these topological structures in a deep learning framework. We leverage the mathematical tools from topological data analysis, i.e., persistent homology and discrete Morse theory, to develop principled methods for better segmentation and uncertainty estimation, which will become powerful tools for scalable annotation.
Related papers
- Hidden Holes: topological aspects of language models [1.1172147007388977]
We study the evolution of topological structure in GPT based large language models across depth and time during training.
We show that the latter exhibit more topological complexity, with a distinct pattern of changes common to all natural languages but absent from synthetically generated data.
arXiv Detail & Related papers (2024-06-09T14:25:09Z) - Higher-order topological kernels via quantum computation [68.8204255655161]
Topological data analysis (TDA) has emerged as a powerful tool for extracting meaningful insights from complex data.
We propose a quantum approach to defining Betti kernels, which is based on constructing Betti curves with increasing order.
arXiv Detail & Related papers (2023-07-14T14:48:52Z) - S3M: Scalable Statistical Shape Modeling through Unsupervised
Correspondences [91.48841778012782]
We propose an unsupervised method to simultaneously learn local and global shape structures across population anatomies.
Our pipeline significantly improves unsupervised correspondence estimation for SSMs compared to baseline methods.
Our method is robust enough to learn from noisy neural network predictions, potentially enabling scaling SSMs to larger patient populations.
arXiv Detail & Related papers (2023-04-15T09:39:52Z) - Topologically Regularized Data Embeddings [15.001598256750619]
We introduce a generic approach based on algebraic topology to incorporate topological prior knowledge into low-dimensional embeddings.
We show that jointly optimizing an embedding loss with such a topological loss function as a regularizer yields embeddings that reflect not only local proximities but also the desired topological structure.
We empirically evaluate the proposed approach on computational efficiency, robustness, and versatility in combination with linear and non-linear dimensionality reduction and graph embedding methods.
arXiv Detail & Related papers (2023-01-09T13:49:47Z) - Persistence-based operators in machine learning [62.997667081978825]
We introduce a class of persistence-based neural network layers.
Persistence-based layers allow the users to easily inject knowledge about symmetries respected by the data, are equipped with learnable weights, and can be composed with state-of-the-art neural architectures.
arXiv Detail & Related papers (2022-12-28T18:03:41Z) - Experimental Observations of the Topology of Convolutional Neural
Network Activations [2.4235626091331737]
Topological data analysis provides compact, noise-robust representations of complex structures.
Deep neural networks (DNNs) learn millions of parameters associated with a series of transformations defined by the model architecture.
In this paper, we apply cutting edge techniques from TDA with the goal of gaining insight into the interpretability of convolutional neural networks used for image classification.
arXiv Detail & Related papers (2022-12-01T02:05:44Z) - Learning Probabilistic Structural Representation for Biomedical Image
Segmentation [37.07198480786721]
We propose the first deep learning method to learn a structural representation.
We empirically demonstrate the strength of our method, i.e., generating true structures rather than pixel-maps with better topological integrity.
arXiv Detail & Related papers (2022-06-03T06:00:26Z) - Generalized Shape Metrics on Neural Representations [26.78835065137714]
We provide a family of metric spaces that quantify representational dissimilarity.
We modify existing representational similarity measures based on canonical correlation analysis to satisfy the triangle inequality.
We identify relationships between neural representations that are interpretable in terms of anatomical features and model performance.
arXiv Detail & Related papers (2021-10-27T19:48:55Z) - Deep Unrolled Recovery in Sparse Biological Imaging [62.997667081978825]
Deep algorithm unrolling is a model-based approach to develop deep architectures that combine the interpretability of iterative algorithms with the performance gains of supervised deep learning.
This framework is well-suited to applications in biological imaging, where physics-based models exist to describe the measurement process and the information to be recovered is often highly structured.
arXiv Detail & Related papers (2021-09-28T20:22:44Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.