論文の概要: Towards Measuring and Modeling "Culture" in LLMs: A Survey
- arxiv url: http://arxiv.org/abs/2403.15412v5
- Date: Wed, 4 Sep 2024 05:12:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-07 03:32:18.997440
- Title: Towards Measuring and Modeling "Culture" in LLMs: A Survey
- Title(参考訳): LLMにおける「培養」の測定とモデル化に向けて
- Authors: Muhammad Farid Adilazuarda, Sagnik Mukherjee, Pradhyumna Lavania, Siddhant Singh, Alham Fikri Aji, Jacki O'Neill, Ashutosh Modi, Monojit Choudhury,
- Abstract要約: 大規模言語モデル(LLM)における文化的表現と包摂性の研究を目的とした,90以上の最近の論文について調査する。
いずれの研究も「文化」を明確に定義していない。
これらの側面を文化のプロキシと呼び、人口統計学と意味論的プロキシの2つの側面にまたがってそれらを整理します。
- 参考スコア(独自算出の注目度): 21.94407169332458
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present a survey of more than 90 recent papers that aim to study cultural representation and inclusion in large language models (LLMs). We observe that none of the studies explicitly define "culture, which is a complex, multifaceted concept; instead, they probe the models on some specially designed datasets which represent certain aspects of "culture". We call these aspects the proxies of culture, and organize them across two dimensions of demographic and semantic proxies. We also categorize the probing methods employed. Our analysis indicates that only certain aspects of ``culture,'' such as values and objectives, have been studied, leaving several other interesting and important facets, especially the multitude of semantic domains (Thompson et al., 2020) and aboutness (Hershcovich et al., 2022), unexplored. Two other crucial gaps are the lack of robustness of probing techniques and situated studies on the impact of cultural mis- and under-representation in LLM-based applications.
- Abstract(参考訳): 本稿では,大言語モデル(LLM)における文化的表現と包摂性の研究を目的とした,90以上の最近の論文について調査する。
いずれの研究も「文化」を明示的に定義せず、複雑な多面的概念であり、代わりに「文化」の特定の側面を表す特別に設計されたデータセット上でモデルを探索している。
これらの側面を文化のプロキシと呼び、人口統計学と意味論的プロキシの2つの側面にまたがってそれらを整理します。
また、使用する探索方法も分類する。
分析の結果,「文化」の「価値」や目的」といった特定の側面のみが研究されており,特にセマンティックドメインの多様さ (Thompson et al , 2020) や,非探索的な話題 (Hershcovich et al , 2022) が残されている。
その他の2つの重要なギャップは、探索技術の堅牢性の欠如と、LLMベースの応用における文化的誤表現と低表現の影響に関する位置研究である。
関連論文リスト
- Extrinsic Evaluation of Cultural Competence in Large Language Models [53.626808086522985]
本稿では,2つのテキスト生成タスクにおける文化能力の評価に焦点をあてる。
我々は,文化,特に国籍の明示的なキューが,そのプロンプトに乱入している場合のモデル出力を評価する。
異なる国におけるアウトプットのテキスト類似性とこれらの国の文化的価値との間には弱い相関関係がある。
論文 参考訳(メタデータ) (2024-06-17T14:03:27Z) - CIVICS: Building a Dataset for Examining Culturally-Informed Values in Large Language Models [59.22460740026037]
大規模言語モデル(LLM)の社会的・文化的変動を評価するためのデータセット「CIVICS:文化インフォームド・バリュース・インクルーシブ・コーパス・フォー・ソシエティ・インパクト」
我々は、LGBTQIの権利、社会福祉、移民、障害権利、代理など、特定の社会的に敏感なトピックに対処する、手作りの多言語プロンプトのデータセットを作成します。
論文 参考訳(メタデータ) (2024-05-22T20:19:10Z) - Understanding the Capabilities and Limitations of Large Language Models for Cultural Commonsense [98.09670425244462]
大規模言語モデル(LLM)は、かなりの常識的理解を示している。
本稿では,文化的コモンセンスタスクの文脈におけるいくつかの最先端LCMの能力と限界について検討する。
論文 参考訳(メタデータ) (2024-05-07T20:28:34Z) - What You Use is What You Get: Unforced Errors in Studying Cultural Aspects in Agile Software Development [2.9418191027447906]
文化的特徴の影響を調べることは、多面的な文化概念のために困難である。
文化的・社会的側面は、実際にの使用が成功する上で非常に重要である。
論文 参考訳(メタデータ) (2024-04-25T20:08:37Z) - CULTURE-GEN: Revealing Global Cultural Perception in Language Models through Natural Language Prompting [68.37589899302161]
110か国・地域での3つのSOTAモデルの文化認識を,文化条件付き世代を通して8つの文化関連トピックについて明らかにした。
文化条件付き世代は、デフォルトの文化と区別される余分な文化を区別する言語的な「マーカー」から成り立っていることが判明した。
論文 参考訳(メタデータ) (2024-04-16T00:50:43Z) - Investigating Cultural Alignment of Large Language Models [10.738300803676655]
LLM(Large Language Models)は,異なる文化で採用されている多様な知識を真にカプセル化していることを示す。
社会学的調査をシミュレートし、実際の調査参加者のモデル応答を参考として、文化的アライメントの定量化を行う。
本稿では,人類学的推論を活用し,文化的アライメントを高める新しい手法である人類学的プロンプティングを紹介する。
論文 参考訳(メタデータ) (2024-02-20T18:47:28Z) - Massively Multi-Cultural Knowledge Acquisition & LM Benchmarking [48.21982147529661]
本稿では,多文化知識獲得のための新しいアプローチを提案する。
本手法は,文化トピックに関するウィキペディア文書からリンクページの広範囲なネットワークへ戦略的にナビゲートする。
私たちの仕事は、AIにおける文化的格差のギャップを深く理解し、橋渡しするための重要なステップです。
論文 参考訳(メタデータ) (2024-02-14T18:16:54Z) - Not All Countries Celebrate Thanksgiving: On the Cultural Dominance in
Large Language Models [89.94270049334479]
本稿では,大規模言語モデル(LLM)における文化的優位性について述べる。
LLMは、ユーザーが非英語で尋ねるときに期待する文化とは無関係な、不適切な英語文化関連の回答を提供することが多い。
論文 参考訳(メタデータ) (2023-10-19T05:38:23Z) - Navigating Cultural Chasms: Exploring and Unlocking the Cultural POV of
Text-To-Image Models [36.04866429768613]
本稿では,3つの階層(文化次元,文化領域,文化概念)にまたがる文化を特徴付けることによって,テキスト・トゥ・イメージ・モデルに埋め込まれた文化的知覚を探求する。
本稿では,CLIP空間を用いた内在的評価,ビジュアルクエスト・アンサー(VQA)モデルによる外在的評価,人的評価など,総合的な評価手法を提案する。
我々の実験は、TTIモデルにおける文化的エンコーディングの性質について、Do、What、What、Howおよび研究に関する洞察を提供し、異文化的な応用への道を開いた。
論文 参考訳(メタデータ) (2023-10-03T10:13:36Z) - Cultural Alignment in Large Language Models: An Explanatory Analysis Based on Hofstede's Cultural Dimensions [10.415002561977655]
本研究は,ホフステデの文化次元の枠組みを用いて文化的アライメントを定量化する文化アライメントテスト (Hoftede's CAT) を提案する。
我々は、米国、中国、アラブ諸国といった地域の文化的側面に対して、大規模言語モデル(LLM)を定量的に評価する。
その結果, LLMの文化的アライメントを定量化し, 説明的文化的次元におけるLCMの差異を明らかにすることができた。
論文 参考訳(メタデータ) (2023-08-25T14:50:13Z) - Probing Pre-Trained Language Models for Cross-Cultural Differences in
Values [42.45033681054207]
我々は、事前学習言語モデルにどの文化にわたってどの価値が埋め込まれているかを調査するためにプローブを導入する。
PTLMは文化全体における価値の差異を捉えているが、確立した価値調査と弱く一致しているだけである。
論文 参考訳(メタデータ) (2022-03-25T15:45:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。