論文の概要: SensoryT5: Infusing Sensorimotor Norms into T5 for Enhanced Fine-grained Emotion Classification
- arxiv url: http://arxiv.org/abs/2403.15574v1
- Date: Fri, 22 Mar 2024 19:03:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 22:02:34.094679
- Title: SensoryT5: Infusing Sensorimotor Norms into T5 for Enhanced Fine-grained Emotion Classification
- Title(参考訳): SensoryT5:T5にSensorimotor Normsを注入して感情を細かく分類する
- Authors: Yuhan Xia, Qingqing Zhao, Yunfei Long, Ge Xu, Jia Wang,
- Abstract要約: SensoryT5は、感覚情報をT5モデルに統合し、微粒な感情分類を行う神経認知アプローチである。
厳格なテストでは、SensoryT5はパフォーマンスを改善し、基礎的なT5モデルと最先端の作業の両方を上回っている。
- 参考スコア(独自算出の注目度): 9.689382241938493
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In traditional research approaches, sensory perception and emotion classification have traditionally been considered separate domains. Yet, the significant influence of sensory experiences on emotional responses is undeniable. The natural language processing (NLP) community has often missed the opportunity to merge sensory knowledge with emotion classification. To address this gap, we propose SensoryT5, a neuro-cognitive approach that integrates sensory information into the T5 (Text-to-Text Transfer Transformer) model, designed specifically for fine-grained emotion classification. This methodology incorporates sensory cues into the T5's attention mechanism, enabling a harmonious balance between contextual understanding and sensory awareness. The resulting model amplifies the richness of emotional representations. In rigorous tests across various detailed emotion classification datasets, SensoryT5 showcases improved performance, surpassing both the foundational T5 model and current state-of-the-art works. Notably, SensoryT5's success signifies a pivotal change in the NLP domain, highlighting the potential influence of neuro-cognitive data in refining machine learning models' emotional sensitivity.
- Abstract(参考訳): 伝統的な研究アプローチでは、感覚知覚と感情の分類は伝統的に別々の領域と見なされてきた。
しかし、感覚経験が感情反応に与える影響は否定できない。
自然言語処理(NLP)コミュニティは、感覚知識と感情分類を融合する機会を欠いていることが多い。
このギャップに対処するために,感覚情報をT5(Text-to-Text Transfer Transformer)モデルに統合する神経認知アプローチであるSensoryT5を提案する。
この手法は感覚の手がかりをT5の注意機構に組み込み、文脈理解と感覚認識の調和のバランスを可能にする。
結果のモデルは感情表現の豊かさを増幅する。
さまざまな詳細な感情分類データセットを対象とした厳密なテストでは、SensoryT5は、基礎となるT5モデルと現在の最先端の作業の両方を超越して、パフォーマンスの向上を見せている。
特に、SensoryT5の成功は、NLPドメインにおける重要な変化を示し、機械学習モデルの感情感受性の精製における神経認知データの影響を浮き彫りにする。
関連論文リスト
- Exploring Emotions in Multi-componential Space using Interactive VR Games [1.1510009152620668]
インタラクティブバーチャルリアリティ(VR)ゲームを用いたデータ駆動型アプローチを運用した。
機械学習(ML)手法を用いて、各コンポーネントの感情分化に対するユニークな貢献を識別した。
これらの知見は、感情研究におけるVR環境の利用にも影響する。
論文 参考訳(メタデータ) (2024-04-04T06:54:44Z) - Computer Vision Estimation of Emotion Reaction Intensity in the Wild [1.5481864635049696]
本稿では,新たに導入された感情反応強度(ERI)推定課題について述べる。
視覚領域で訓練された4つのディープニューラルネットワークと、感情反応強度を予測するために視覚的特徴と音声的特徴の両方で訓練されたマルチモーダルモデルを開発した。
論文 参考訳(メタデータ) (2023-03-19T19:09:41Z) - Emotion Intensity and its Control for Emotional Voice Conversion [77.05097999561298]
感情音声変換(EVC)は、言語内容と話者のアイデンティティを保ちながら、発話の感情状態を変換しようとする。
本稿では,感情の強さを明示的に表現し,制御することを目的とする。
本稿では,話者スタイルを言語内容から切り離し,連続した空間に埋め込み,感情埋め込みのプロトタイプを形成するスタイルに符号化することを提案する。
論文 参考訳(メタデータ) (2022-01-10T02:11:25Z) - Progressive Graph Convolution Network for EEG Emotion Recognition [35.08010382523394]
神経科学領域の研究により、感情パターンと脳機能領域の関係が明らかになった。
脳波による感情認識では、きめ細かい感情の間には、きめ細かい感情の間により明確な境界が存在することが観察できる。
脳波の感情信号に特有の特徴を捉えるためのプログレッシブグラフ畳み込みネットワーク(PGCN)を提案する。
論文 参考訳(メタデータ) (2021-12-14T03:30:13Z) - Stimuli-Aware Visual Emotion Analysis [75.68305830514007]
本稿では,刺激選択,特徴抽出,感情予測の3段階からなる刺激認識型視覚感情分析(VEA)手法を提案する。
我々の知る限りでは、エンド・ツー・エンドのネットワークでVEAに刺激選択プロセスを導入するのは初めてです。
実験により、提案手法は、4つの公的な視覚的感情データセットに対する最先端のアプローチよりも一貫して優れていることが示された。
論文 参考訳(メタデータ) (2021-09-04T08:14:52Z) - A Circular-Structured Representation for Visual Emotion Distribution
Learning [82.89776298753661]
視覚的感情分布学習に先立つ知識を活用するために,身近な円形構造表現を提案する。
具体的には、まず感情圏を構築し、その内にある感情状態を統一する。
提案した感情圏では、各感情分布は3つの属性で定義される感情ベクトルで表される。
論文 参考訳(メタデータ) (2021-06-23T14:53:27Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
本稿では,きめ細かな感情の埋め込み表現を生成するための,新しいディープラーニングフレームワークを提案する。
本フレームワークは,コンテキスト型埋め込みエンコーダとマルチヘッド探索モデルを統合する。
本モデルは共感対話データセット上で評価され,32種類の感情を分類する最新結果を示す。
論文 参考訳(メタデータ) (2021-04-20T16:55:15Z) - Emotion pattern detection on facial videos using functional statistics [62.997667081978825]
顔面筋運動の有意なパターンを抽出する機能的ANOVAに基づく手法を提案する。
感情群間の表現に時間的差があるかどうかを関数fテストを用いて判定する。
論文 参考訳(メタデータ) (2021-03-01T08:31:08Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z) - Detecting Emotion Primitives from Speech and their use in discerning
Categorical Emotions [16.886826928295203]
感情は人間同士のコミュニケーションにおいて重要な役割を担い、幸福やフラストレーション、誠実さといった感情を伝えることができる。
この研究は、感情プリミティブが、幸福、嫌悪、軽蔑、怒り、驚きといったカテゴリー的感情を中性的なスピーチから検出する方法について研究した。
以上の結果から, 覚醒と支配は, 感情のより優れた検出方法であった。
論文 参考訳(メタデータ) (2020-01-31T03:11:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。