論文の概要: Semantic Gaussians: Open-Vocabulary Scene Understanding with 3D Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2403.15624v1
- Date: Fri, 22 Mar 2024 21:28:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 21:41:55.424314
- Title: Semantic Gaussians: Open-Vocabulary Scene Understanding with 3D Gaussian Splatting
- Title(参考訳): セマンティックガウス:3次元ガウススプレイティングによるオープン語彙シーン理解
- Authors: Jun Guo, Xiaojian Ma, Yue Fan, Huaping Liu, Qing Li,
- Abstract要約: オープン語彙の3Dシーン理解はコンピュータビジョンにおいて重要な課題である。
本稿では,セマンティックガウシアン(SemanticGaussians)について紹介する。
提案手法は,従来のオープン語彙シーン理解手法よりも4.2%mIoUと4.0%mAccの改善を実現している。
- 参考スコア(独自算出の注目度): 27.974762304763694
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Open-vocabulary 3D scene understanding presents a significant challenge in computer vision, withwide-ranging applications in embodied agents and augmented reality systems. Previous approaches haveadopted Neural Radiance Fields (NeRFs) to analyze 3D scenes. In this paper, we introduce SemanticGaussians, a novel open-vocabulary scene understanding approach based on 3D Gaussian Splatting. Our keyidea is distilling pre-trained 2D semantics into 3D Gaussians. We design a versatile projection approachthat maps various 2Dsemantic features from pre-trained image encoders into a novel semantic component of 3D Gaussians, withoutthe additional training required by NeRFs. We further build a 3D semantic network that directly predictsthe semantic component from raw 3D Gaussians for fast inference. We explore several applications ofSemantic Gaussians: semantic segmentation on ScanNet-20, where our approach attains a 4.2% mIoU and 4.0%mAcc improvement over prior open-vocabulary scene understanding counterparts; object part segmentation,sceneediting, and spatial-temporal segmentation with better qualitative results over 2D and 3D baselines,highlighting its versatility and effectiveness on supporting diverse downstream tasks.
- Abstract(参考訳): オープンボキャブラリ3Dシーン理解は、コンピュータビジョンにおいて、エンボディエージェントや拡張現実システムにおける幅広い応用において重要な課題である。
従来のアプローチでは、Neural Radiance Fields(NeRF)を使用して3Dシーンを解析していた。
本稿では,セマンティックガウシアン(SemanticGaussians)について紹介する。
我々のキーイデアは、事前訓練された2Dセマンティクスを3Dガウスに蒸留することである。
我々は,事前学習した画像エンコーダの様々な2次元特徴を,NeRFによる追加の訓練を必要とせず,新しい3次元ガウスのセマンティックな構成要素にマッピングする多目的投影手法を設計する。
さらに、高速な推論のために、生の3Dガウスから意味コンポーネントを直接予測する3Dセマンティックネットワークを構築します。
ScanNet-20におけるセマンティック・ガウスのセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティビティと4.2%mIoUと4.0%AccのAccは、従来のオープンボキャブラリーなシーン理解よりも向上し、オブジェクト部分セマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンティックなセマンのセマンティックなセマンティックなセマンティックなセマンの応用を探求を探求を探求に研究した。
関連論文リスト
- Learning Part-aware 3D Representations by Fusing 2D Gaussians and Superquadrics [16.446659867133977]
ポイントクラウド、メッシュ、NeRF、そして3Dガウスのような低レベルの3D表現は、一般的に3Dオブジェクトやシーンを表現するために使用される。
オブジェクトやシーンをセマンティックな部分に解析する部分認識型3D再構成の実現を目指している。
論文 参考訳(メタデータ) (2024-08-20T12:30:37Z) - GOI: Find 3D Gaussians of Interest with an Optimizable Open-vocabulary Semantic-space Hyperplane [53.388937705785025]
3Dオープンボキャブラリのシーン理解は、拡張現実とロボット応用の推進に不可欠である。
GOIは2次元視覚言語基礎モデルから3次元ガウススプラッティング(3DGS)に意味的特徴を統合するフレームワークである。
提案手法では,特徴空間内の超平面分割として特徴選択処理を扱い,クエリに関連性の高い特徴のみを保持する。
論文 参考訳(メタデータ) (2024-05-27T18:57:18Z) - GaussianFormer: Scene as Gaussians for Vision-Based 3D Semantic Occupancy Prediction [70.65250036489128]
3Dのセマンティック占有予測は,周囲のシーンの3Dの微細な形状とセマンティックスを得ることを目的としている。
本稿では,3Dシーンを3Dセマンティック・ガウシアンで表現するオブジェクト中心表現を提案する。
GaussianFormerは17.8%から24.8%のメモリ消費しか持たない最先端のメソッドで同等のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-05-27T17:59:51Z) - CLIP-GS: CLIP-Informed Gaussian Splatting for Real-time and View-consistent 3D Semantic Understanding [32.76277160013881]
コントラスト言語画像事前学習(CLIP)のセマンティクスをガウススプラッティングに統合するCLIP-GSを提案する。
SACはオブジェクト内の固有の統一意味論を利用して、3Dガウスのコンパクトで効果的な意味表現を学ぶ。
また,3次元モデルから得られた多視点一貫性を利用して,3次元コヒーレント自己学習(3DCS)戦略を導入する。
論文 参考訳(メタデータ) (2024-04-22T15:01:32Z) - latentSplat: Autoencoding Variational Gaussians for Fast Generalizable 3D Reconstruction [48.86083272054711]
latentSplatは3D潜在空間における意味ガウスを予測し、軽量な生成型2Dアーキテクチャで切り落としてデコードする手法である。
latentSplatは、高速でスケーラブルで高解像度なデータでありながら、復元品質と一般化におけるこれまでの成果よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-03-24T20:48:36Z) - HUGS: Holistic Urban 3D Scene Understanding via Gaussian Splatting [53.6394928681237]
RGB画像に基づく都市景観の全体的理解は、難しいが重要な問題である。
我々の主な考え方は、静的な3Dガウスと動的なガウスの組合せを用いた幾何学、外観、意味論、運動の合同最適化である。
提案手法は,2次元および3次元のセマンティック情報を高精度に生成し,新たな視点をリアルタイムに描画する機能を提供する。
論文 参考訳(メタデータ) (2024-03-19T13:39:05Z) - SemGauss-SLAM: Dense Semantic Gaussian Splatting SLAM [14.126704753481972]
本稿では,SemGauss-SLAMを提案する。SemGauss-SLAMは,高精度な3次元セマンティックマッピング,ロバストなカメラトラッキング,高品質なレンダリングを実現する。
セマンティックな特徴を3次元ガウス表現に組み込んで,環境の空間的レイアウト内で意味情報を効果的にエンコードする。
トラッキングにおける累積ドリフトの低減とセマンティック再構築の精度向上のために,セマンティックインフォームドバンドル調整を導入する。
論文 参考訳(メタデータ) (2024-03-12T10:33:26Z) - SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition [66.80822249039235]
3Dガウススプラッティングは、新しいビュー合成のための代替の3D表現として登場した。
SAGDは3D-GSのための概念的にシンプルで効果的な境界拡張パイプラインである。
提案手法は粗い境界問題なく高品質な3Dセグメンテーションを実現し,他のシーン編集作業にも容易に適用できる。
論文 参考訳(メタデータ) (2024-01-31T14:19:03Z) - FMGS: Foundation Model Embedded 3D Gaussian Splatting for Holistic 3D Scene Understanding [11.118857208538039]
基礎モデルの視覚言語埋め込みを3次元ガウススプラッティング(GS)に組み込んだ基礎モデル埋め込みガウススプラッティング(S)を提案する。
結果は、多面的なセマンティック一貫性を示し、様々な下流タスクを容易にし、オープン語彙言語に基づくオブジェクト検出において、最先端のメソッドを10.2%上回った。
本研究では,視覚・言語・3次元シーン表現の交わりについて検討し,制御されていない現実世界環境におけるシーン理解の強化の道を開く。
論文 参考訳(メタデータ) (2024-01-03T20:39:02Z) - SSR-2D: Semantic 3D Scene Reconstruction from 2D Images [54.46126685716471]
本研究では,3Dアノテーションを使わずにセマンティックなシーン再構成を行う中心的な3Dシーンモデリングタスクについて検討する。
提案手法の鍵となる考え方は,不完全な3次元再構成と対応するRGB-D画像の両方を用いたトレーニング可能なモデルの設計である。
本研究では,2つの大規模ベンチマークデータセットであるMatterPort3DとScanNetに対して,セマンティックシーン補完の最先端性能を実現する。
論文 参考訳(メタデータ) (2023-02-07T17:47:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。