論文の概要: Modified Multiple Sequence Alignment Algorithm on Quantum Annealers (MAQ)
- arxiv url: http://arxiv.org/abs/2403.17979v1
- Date: Sun, 24 Mar 2024 01:57:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 21:34:33.676591
- Title: Modified Multiple Sequence Alignment Algorithm on Quantum Annealers (MAQ)
- Title(参考訳): 量子アニール(MAQ)の修正多重配列アライメントアルゴリズム
- Authors: Melody Lee,
- Abstract要約: 本稿では,生物情報学と遺伝的シークエンシングの分野に応用した量子アニールに対する改良型MSAアルゴリズムを提案する。
我々は、アルゴリズムにより多くの量子複素数を導入しながら、スピン使用率の線形化を達成するために、プログレッシブアライメント手法を適用した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a modified MSA algorithm on quantum annealers with applications in areas of bioinformatics and genetic sequencing. To understand the human genome, researchers compare extensive sets of these genetic sequences -- or their protein counterparts -- to identify patterns. This comparison begins with the alignment of the set of (multiple) sequences. However, this alignment problem is considered nondeterministically-polynomial time complete and, thus, current classical algorithms at best rely on brute force or heuristic methods to find solutions. Quantum annealing algorithms are able to bypass this need for sheer brute force due to their use of quantum mechanical properties. However, due to the novelty of these algorithms, many are rudimentary in nature and limited by hardware restrictions. We apply progressive alignment techniques to modify annealing algorithms, achieving a linear reduction in spin usage whilst introducing more complex heuristics to the algorithm. This opens the door for further exploration into quantum computing-based bioinformatics, potentially allowing for a deeper understanding of disease detection and monitoring.
- Abstract(参考訳): 本稿では,生物情報学と遺伝的シークエンシングの分野に応用した量子アニールに対する改良型MSAアルゴリズムを提案する。
ヒトゲノムを理解するために、研究者はこれらの遺伝子配列(またはそのタンパク質)の広範なセットを比較してパターンを同定する。
この比較は、(多重)列の集合のアライメントから始まる。
しかし、このアライメント問題は非決定論的にポリノミカル時間完備であると考えられており、それゆえ、現在の古典的アルゴリズムは解を見つけるためにブルート力やヒューリスティックな方法に最も依存している。
量子アニーリングアルゴリズムは、量子力学的性質の使用により、この強いブルート力の必要性を回避できる。
しかし、これらのアルゴリズムの新規性のため、多くは初歩的で、ハードウェアの制約によって制限されている。
進行アライメント手法を用いてアニーリングアルゴリズムを改良し、より複雑なヒューリスティックスをアルゴリズムに導入しながら、スピン使用率を線形に削減する。
これにより、量子コンピューティングベースのバイオインフォマティクス(bioinformatics)のさらなる探索の扉が開かれ、病気の検出とモニタリングをより深く理解することが可能になる。
関連論文リスト
- The Algorithm for Solving Quantum Linear Systems of Equations With Coherent Superposition and Its Extended Applications [8.8400072344375]
コヒーレント重ね合わせを持つ方程式の量子線型系を解くための2つの量子アルゴリズムを提案する。
2つの量子アルゴリズムは、ランクと一般解の両方を1つの測定で計算できる。
分析の結果,提案アルゴリズムは主に軽量対称暗号に対する攻撃に適していることがわかった。
論文 参考訳(メタデータ) (2024-05-11T03:03:14Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - The Conquest of Quantum Genetic Algorithms: The Adventure to Cross the
Valley of Death [0.0]
本稿では、進化的アルゴリズムの量子バージョンを設計する際に生じる困難について論じる。
論文には、これらの進化的アルゴリズムの量子バージョンであるPythonとQISKITの両方のコードが含まれている。
論文 参考訳(メタデータ) (2023-12-10T17:30:29Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
量子アリーモト・ブラフトアルゴリズムをRamakrishnanらにより一般化する。
3つの量子系を持つ量子情報ボトルネックに対して,我々のアルゴリズムを適用した。
数値解析により,我々のアルゴリズムはアルゴリズムよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-11-19T00:06:11Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
期待されている量子コンピュータの応用は、科学と産業にまたがる。
本稿では,量子アルゴリズムの応用分野について検討する。
私たちは、各領域における課題と機会を"エンドツーエンド"な方法で概説します。
論文 参考訳(メタデータ) (2023-10-04T17:53:55Z) - Iterative Quantum Algorithms for Maximum Independent Set: A Tale of
Low-Depth Quantum Algorithms [0.0]
我々は、反復最大量子アルゴリズム(Iterative Maximum Quantum Algorithms)と呼ばれる、量子最適化のための新しいハイブリッドアプローチのクラスについて研究する。
深度$p=1$のQAOAの場合、このアルゴリズムはMISの古典的欲求アルゴリズムと全く同じ操作と選択を行う。
論文 参考訳(メタデータ) (2023-09-22T18:00:03Z) - Robust Dequantization of the Quantum Singular value Transformation and
Quantum Machine Learning Algorithms [0.0]
この弱い仮定の下では、ランダム化線形代数の技法がどれだけ多く適用できるかを示す。
また、これらの結果を用いて、多くの量子機械学習アルゴリズムの頑健な復号化を行う。
論文 参考訳(メタデータ) (2023-04-11T02:09:13Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
我々は3つのハイブリッド量子k-Meansアルゴリズムを設計、実装、評価する。
我々は距離の計算を高速化するために量子現象を利用する。
我々は、我々のハイブリッド量子k-平均アルゴリズムが古典的バージョンよりも効率的であることを示す。
論文 参考訳(メタデータ) (2022-12-13T16:04:16Z) - Quantum vs classical genetic algorithms: A numerical comparison shows
faster convergence [0.0]
いくつかの量子変種は、収束速度において全ての古典的変種よりも近い最適結果に対して優れていることを示す。
もしこの利点がより大きなシステムに当てはまるなら、量子遺伝アルゴリズムは量子コンピュータの最適化問題に対処するための新しいツールを提供するだろう。
論文 参考訳(メタデータ) (2022-07-19T13:07:44Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vaziraniアルゴリズムは、オラクルに符号化されたビット文字列を決定できる。
我々はベルンシュタイン・ヴァジラニアルゴリズムの量子資源を詳細に分析する。
絡み合いがない場合、初期状態における量子コヒーレンス量とアルゴリズムの性能が直接関係していることが示される。
論文 参考訳(メタデータ) (2022-05-26T20:32:36Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
我々は、リコメンダシステムと最小二乗回帰のためのクエリをサポートする古典的な(量子でない)動的データ構造を作成する。
これらの問題に対する以前の量子インスパイアされたアルゴリズムは、レバレッジやリッジレベレッジスコアを偽装してサンプリングしていると我々は主張する。
論文 参考訳(メタデータ) (2020-11-09T01:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。