Bypassing eigenstate thermalization with experimentally accessible quantum dynamics
- URL: http://arxiv.org/abs/2503.07729v1
- Date: Mon, 10 Mar 2025 18:00:05 GMT
- Title: Bypassing eigenstate thermalization with experimentally accessible quantum dynamics
- Authors: Amit Vikram,
- Abstract summary: Eigenstate thermalization has played a prominent role as a determiner of the validity of quantum statistical mechanics since von Neumann's early works on quantum ergodicity.<n>Here, we introduce the notion of energy-band thermalization to address limitations, which coarse-grains over energy level spacings with a finite energy resolution.<n>We show that energy-band thermalization implies the thermalization of an observable in almost all physical states over timescales without relying on microscopic properties of the energy eigenvalues or eigenstates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Eigenstate thermalization has played a prominent role as a determiner of the validity of quantum statistical mechanics since von Neumann's early works on quantum ergodicity. However, its connection to the dynamical process of quantum thermalization relies sensitively on nondegeneracy properties of the energy spectrum, as well as detailed features of individual eigenstates that are effective only over correspondingly large timescales, rendering it generically inaccessible given practical timescales and finite experimental resources. Here, we introduce the notion of energy-band thermalization to address these limitations, which coarse-grains over energy level spacings with a finite energy resolution. We show that energy-band thermalization implies the thermalization of an observable in almost all physical states over accessible timescales without relying on microscopic properties of the energy eigenvalues or eigenstates, and conversely, can be efficiently accessed in experiments via the dynamics of a single initial state (for a given observable) with only polynomially many resources in the system size. This allows us to directly determine thermalization, including in the presence of conserved charges, from this state: Most strikingly, if an observable thermalizes in this initial state over a finite range of times, then it must thermalize in almost all physical initial states over all longer timescales. As applications, we derive a finite-time Mazur-Suzuki inequality for quantum transport with approximately conserved charges, and establish the thermalization of local observables over finite timescales in almost all accessible states in (generally inhomogeneous) dual-unitary quantum circuits. We also propose measurement protocols for general many-qubit systems. This work initiates a rigorous treatment of quantum thermalization in terms of experimentally accessible quantities.
Related papers
- Physically constrained quantum clock-driven dynamics [0.6990493129893112]
This paper describes a fully quantum description of the engine-clock dynamics within a realistic quantum framework.
It offers the possibility to address the deeper and more fundamental challenge of defining meaningful time operators in the realm of quantum mechanics.
arXiv Detail & Related papers (2024-09-04T16:30:47Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Typical thermalization of low-entanglement states [0.29998889086656577]
We prove thermalization of low entanglement initial states under precise conditions.
We define a random energy smoothing on local Hamiltonians that leads to local thermalization when the initial state has low entanglement.
arXiv Detail & Related papers (2024-03-26T18:00:05Z) - A Maximum Entropy Principle in Deep Thermalization and in Hilbert-Space Ergodicity [3.404409295403274]
We report universal statistical properties displayed by ensembles of pure states that naturally emerge in quantum many-body systems.
Our results generalize the notions of Hilbert-space ergodicity to time-independent Hamiltonian dynamics and deep thermalization.
arXiv Detail & Related papers (2024-03-18T17:09:04Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Nonlocality as the source of purely quantum dynamics of BCS
superconductors [0.0]
We show that the classical (mean-field) description of far from equilibrium superconductivity is exact in the thermodynamic limit for local observables.
We do this by solving for and comparing exact quantum and exact classical long-time dynamics of a BCS superconductor.
arXiv Detail & Related papers (2022-08-15T16:33:38Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Dynamical purification and the emergence of quantum state designs from
the projected ensemble [0.0]
Quantum thermalization in a many-body system is defined by the approach of local subsystems towards a universal form.
Projected ensemble can mimic the behavior of a maximally entropic, uniformly random ensemble.
We show that absence of dynamical purification in the space-time dual dynamics yields exact state-designs for all moments $k$ at the same time.
arXiv Detail & Related papers (2022-04-28T17:19:32Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Quasi-probabilities of work and heat in an open quantum system [0.0]
We discuss an approach to determine averages of the work, dissipated heat and variation of internal energy of an open quantum system driven by an external classical field.
We obtain a quasi-characteristic function and a quasi-probability density function for the corresponding observables.
We use this feature to show that in the limit of strong dissipation, the quantum features vanish and interpret this as the emergence of the classical limit of the energy exchange process.
arXiv Detail & Related papers (2021-10-12T06:55:39Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.