論文の概要: Statistical Inference of Optimal Allocations I: Regularities and their Implications
- arxiv url: http://arxiv.org/abs/2403.18248v3
- Date: Thu, 19 Jun 2025 15:21:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-23 19:00:04.627308
- Title: Statistical Inference of Optimal Allocations I: Regularities and their Implications
- Title(参考訳): 最適配置の統計的推測 I:規則性とその意味
- Authors: Kai Feng, Han Hong, Denis Nekipelov,
- Abstract要約: ソート演算子の特性を解析することにより,値関数のアダマール微分性を導出する。
アダマール微分可能性の結果に基づいて,関数デルタ法を適用して値関数過程の特性を求める。
値関数に対する二重/脱バイアス推定器を提案する。
- 参考スコア(独自算出の注目度): 5.911223351920214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we develop a functional differentiability approach for solving statistical optimal allocation problems. We derive Hadamard differentiability of the value functions through analyzing the properties of the sorting operator using tools from geometric measure theory. Building on our Hadamard differentiability results, we apply the functional delta method to obtain the asymptotic properties of the value function process for the binary constrained optimal allocation problem and the plug-in ROC curve estimator. Moreover, the convexity of the optimal allocation value functions facilitates demonstrating the degeneracy of first order derivatives with respect to the policy. We then present a double / debiased estimator for the value functions. Importantly, the conditions that validate Hadamard differentiability justify the margin assumption from the statistical classification literature for the fast convergence rate of plug-in methods.
- Abstract(参考訳): 本稿では,統計的最適割り当て問題を解くための機能的微分可能性アプローチを開発する。
幾何測度理論からツールを用いてソート演算子の性質を解析することにより、値関数のアダマール微分性を導出する。
アダマール微分可能性(英語版)の結果に基づいて、関数デルタ法を適用し、二項制約最適割り当て問題とプラグインROC曲線推定器に対する値関数プロセスの漸近特性を求める。
さらに、最適割当値関数の凸性は、ポリシーに関する一階微分の縮退性を示すのに役立つ。
次に、値関数に対する二重/脱バイアス推定器を示す。
重要なことに、アダマール微分可能性を検証する条件は、プラグイン法の高速収束率に関する統計分類文献からマージン仮定を正当化する。
関連論文リスト
- Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
時間差差(TD)学習は、おそらく政策評価に最も広く使用されるものであり、この目的の自然な枠組みとして機能する。
本稿では,Polyak-Ruppert平均化と線形関数近似によるTD学習の整合性について検討し,既存の結果よりも3つの重要な改善点を得た。
論文 参考訳(メタデータ) (2024-10-21T15:34:44Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - Statistical Optimality of Divide and Conquer Kernel-based Functional
Linear Regression [1.7227952883644062]
本稿では,対象関数が基礎となるカーネル空間に存在しないシナリオにおいて,分割・コンカレント推定器の収束性能について検討する。
分解に基づくスケーラブルなアプローチとして、関数線形回帰の分割・収束推定器は、時間とメモリにおけるアルゴリズムの複雑さを大幅に減らすことができる。
論文 参考訳(メタデータ) (2022-11-20T12:29:06Z) - Off-policy estimation of linear functionals: Non-asymptotic theory for
semi-parametric efficiency [59.48096489854697]
観測データに基づいて線形汎関数を推定する問題は、因果推論と包帯文献の両方において標準的である。
このような手順の平均二乗誤差に対して非漸近上界を証明した。
非漸近的局所ミニマックス下限をマッチングすることにより、有限標本のインスタンス依存最適性を確立する。
論文 参考訳(メタデータ) (2022-09-26T23:50:55Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
統計的汎関数に対するガトー微分を有限差分法で近似する構成的アルゴリズムについて検討する。
本研究では,確率分布を事前知識がないが,データから推定する必要がある場合について検討する。
論文 参考訳(メタデータ) (2022-08-29T16:16:22Z) - From Majorization to Interpolation: Distributionally Robust Learning
using Kernel Smoothing [1.2891210250935146]
確率指標に基づく分布的ロバスト最適化(DRO)の関数近似の側面を検討する。
本稿では,滑らかな関数近似と畳み込みに基づく堅牢な学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-16T22:25:18Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
ヒルベルト空間の既知の低次元部分空間を探索することにより、確率観測の集合を用いて近似解を計算する手法を検討する。
本稿では,線形関数近似を用いた政策評価問題に対する時間差分学習手法の誤差を正確に評価する方法について述べる。
論文 参考訳(メタデータ) (2020-12-09T20:19:32Z) - Equivalence of Convergence Rates of Posterior Distributions and Bayes
Estimators for Functions and Nonparametric Functionals [4.375582647111708]
非パラメトリック回帰におけるガウス過程の先行したベイズ法の後部収縮率について検討する。
カーネルの一般クラスに対しては、回帰関数とその微分の後方測度の収束率を確立する。
我々の証明は、ある条件下では、ベイズ推定器の任意の収束率に対して、後部分布の同じ収束率に対応することを示す。
論文 参考訳(メタデータ) (2020-11-27T19:11:56Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
本稿では,2次フーリエ特徴に基づく導関数によるGP回帰のスケーリング手法を提案する。
我々は、近似されたカーネルと近似された後部の両方に適用される決定論的、非漸近的、指数関数的に高速な崩壊誤差境界を証明した。
論文 参考訳(メタデータ) (2020-03-05T14:33:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。