論文の概要: GeNet: A Graph Neural Network-based Anti-noise Task-Oriented Semantic Communication Paradigm
- arxiv url: http://arxiv.org/abs/2403.18296v1
- Date: Wed, 27 Mar 2024 06:46:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 18:06:46.057715
- Title: GeNet: A Graph Neural Network-based Anti-noise Task-Oriented Semantic Communication Paradigm
- Title(参考訳): GeNet: グラフニューラルネットワークによるタスク指向セマンティック通信パラダイム
- Authors: Chunhang Zheng, Kechao Cai,
- Abstract要約: 従来の意味コミュニケーションのアプローチは、チャネルノイズを軽減するためにSNR(Signal-to-Noise ratio)の知識に依存していた。
ノイズ対策を目的とした意味コミュニケーションのためのグラフニューラルネットワーク(GNN)に基づくパラダイムであるGeNetを提案する。
- 参考スコア(独自算出の注目度): 0.4910937238451484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional approaches to semantic communication tasks rely on the knowledge of the signal-to-noise ratio (SNR) to mitigate channel noise. However, these methods necessitate training under specific SNR conditions, entailing considerable time and computational resources. In this paper, we propose GeNet, a Graph Neural Network (GNN)-based paradigm for semantic communication aimed at combating noise, thereby facilitating Task-Oriented Communication (TOC). We propose a novel approach where we first transform the input data image into graph structures. Then we leverage a GNN-based encoder to extract semantic information from the source data. This extracted semantic information is then transmitted through the channel. At the receiver's end, a GNN-based decoder is utilized to reconstruct the relevant semantic information from the source data for TOC. Through experimental evaluation, we show GeNet's effectiveness in anti-noise TOC while decoupling the SNR dependency. We further evaluate GeNet's performance by varying the number of nodes, revealing its versatility as a new paradigm for semantic communication. Additionally, we show GeNet's robustness to geometric transformations by testing it with different rotation angles, without resorting to data augmentation.
- Abstract(参考訳): 意味コミュニケーションタスクに対する従来のアプローチは、チャネルノイズを軽減するためにSNR(Signal-to-Noise ratio)の知識に依存していた。
しかし、これらの方法は特定のSNR条件下での訓練を必要とし、かなりの時間と計算資源を必要とする。
本稿では,ノイズ対策を目的とした意味コミュニケーションのためのグラフニューラルネットワーク(GNN)に基づくパラダイムであるGeNetを提案し,タスク指向通信(TOC)を容易にする。
入力データイメージをグラフ構造に変換する新しい手法を提案する。
そして、GNNベースのエンコーダを利用して、ソースデータから意味情報を抽出する。
この抽出された意味情報はチャネルを介して送信される。
受信側の最後には、GNNベースのデコーダを使用して、TOCのソースデータから関連する意味情報を再構成する。
実験により,SNR依存性を疎結合化しながら,アンチノイズTOCにおけるGeNetの有効性を示す。
さらに,ノード数を変えてGeNetの性能を評価し,その汎用性を意味コミュニケーションの新しいパラダイムとして明らかにした。
さらに,GeNetの幾何変換に対する頑健さを,データ拡張に頼ることなく,異なる回転角度でテストすることで示す。
関連論文リスト
- BLIS-Net: Classifying and Analyzing Signals on Graphs [20.345611294709244]
グラフニューラルネットワーク(GNN)は、ノード分類やグラフ分類といったタスクのための強力なツールとして登場した。
我々は以前に導入された幾何散乱変換に基づいて構築された新しいGNNであるBLIS-Net(Bi-Lipschitz Scattering Net)を紹介する。
BLIS-Netは,交通流とfMRIデータに基づいて,合成データと実世界のデータの両方において優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2023-10-26T17:03:14Z) - Semantics Alignment via Split Learning for Resilient Multi-User Semantic
Communication [56.54422521327698]
最近の意味コミュニケーションの研究は、ディープジョイントソースやチャネルコーディング(DeepJSCC)のようなニューラルネットワーク(NN)ベースのトランシーバに依存している。
従来のトランシーバとは異なり、これらのニューラルトランシーバは実際のソースデータとチャネルを使用してトレーニング可能であり、セマンティクスを抽出し通信することができる。
本稿では,分割学習(SL)と部分的NN微調整技術を活用する分散学習ベースソリューションを提案する。
論文 参考訳(メタデータ) (2023-10-13T20:29:55Z) - Learning State-Augmented Policies for Information Routing in
Communication Networks [92.59624401684083]
我々は,グラフニューラルネットワーク(GNN)アーキテクチャを用いて,ソースノードの集約情報を最大化する,新たなステート拡張(SA)戦略を開発した。
教師なし学習手法を利用して、GNNアーキテクチャの出力を最適情報ルーティング戦略に変換する。
実験では,実時間ネットワークトポロジの評価を行い,アルゴリズムの有効性を検証した。
論文 参考訳(メタデータ) (2023-09-30T04:34:25Z) - Age of Information in Deep Learning-Driven Task-Oriented Communications [78.84264189471936]
本稿では,その送信機におけるデータを利用した受信機におけるタスク実行を目的とした,タスク指向コミュニケーションにおける年齢概念について検討する。
送信機-受信機操作は、共同で訓練されたディープニューラルネットワーク(DNN)のエンコーダ-デコーダペアとしてモデル化される。
論文 参考訳(メタデータ) (2023-01-11T04:15:51Z) - Semantic Communication Enabling Robust Edge Intelligence for
Time-Critical IoT Applications [87.05763097471487]
本稿では、時間クリティカルなIoTアプリケーションのためのセマンティック通信を用いて、堅牢なエッジインテリジェンスを設計することを目的とする。
本稿では,画像DCT係数が推定精度に与える影響を解析し,オフロードのためのチャネル非依存の有効性符号化を提案する。
論文 参考訳(メタデータ) (2022-11-24T20:13:17Z) - Signal Processing for Implicit Neural Representations [80.38097216996164]
Inlicit Neural Representation (INR)は、マルチ層パーセプトロンを介して連続したマルチメディアデータを符号化する。
既存の作業は、その離散化されたインスタンスの処理を通じて、そのような連続的な表現を操作する。
本稿では,INSP-Netと呼ばれる暗黙的ニューラル信号処理ネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-17T06:29:07Z) - Graph Neural Network Based Node Deployment for Throughput Enhancement [20.56966053013759]
本稿では,ネットワークノード配置問題に対する新しいグラフニューラルネットワーク(GNN)手法を提案する。
提案手法の理論的サポートとして,表現型GNNが関数値とトラフィック置換の両方を近似する能力を持つことを示す。
論文 参考訳(メタデータ) (2022-08-19T08:06:28Z) - Decentralized Inference with Graph Neural Networks in Wireless
Communication Systems [37.95584442614985]
グラフニューラルネットワーク(GNN)は、グラフデータのための効率的なニューラルネットワークモデルであり、無線通信を含むさまざまな分野で広く利用されている。
本稿では,異なる無線通信システムにおける分散GNNのロバスト性を解析し,強化する。
論文 参考訳(メタデータ) (2021-04-19T03:12:24Z) - Learning Task-Oriented Communication for Edge Inference: An Information
Bottleneck Approach [3.983055670167878]
ローエンドエッジ装置は、ローカルデータサンプルの抽出された特徴ベクトルを強力なエッジサーバに送信して処理する。
帯域幅が限られているため、データを低遅延推論のための情報的かつコンパクトな表現に符号化することが重要である。
特徴抽出,ソース符号化,チャネル符号化を協調的に最適化する学習型通信方式を提案する。
論文 参考訳(メタデータ) (2021-02-08T12:53:32Z) - Unsupervised Learning for Asynchronous Resource Allocation in Ad-hoc
Wireless Networks [122.42812336946756]
集約グラフニューラルネットワーク(Agg-GNN)に基づく教師なし学習手法を設計する。
アクティベーションパターンを各ノードの特徴としてモデル化し,ポリシーに基づくリソース割り当て手法を訓練することにより,非同期性を捉える。
論文 参考訳(メタデータ) (2020-11-05T03:38:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。