論文の概要: Using Quantum Computing to Infer Dynamic Behaviors of Biological and Artificial Neural Networks
- arxiv url: http://arxiv.org/abs/2403.18963v1
- Date: Wed, 27 Mar 2024 19:16:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-03-29 18:11:43.860249
- Title: Using Quantum Computing to Infer Dynamic Behaviors of Biological and Artificial Neural Networks
- Title(参考訳): 量子コンピューティングを用いた生体ニューラルネットワークとニューラルネットワークの動的挙動の推算
- Authors: Gabriel A. Silva,
- Abstract要約: 本質的に完全に探索されていないトピックは、量子アルゴリズムとコンピューティングを使用して、ニューラルネットワークの機能的ダイナミクスに関する質問をテキスト化し、問うことである。
これは、生体および人工ニューラルネットワークのモデリングとシミュレーションに量子コンピューティングを適用するという、まだ初期段階のトピックのコンポーネントである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The exploration of new problem classes for quantum computation is an active area of research. An essentially completely unexplored topic is the use of quantum algorithms and computing to explore and ask questions \textit{about} the functional dynamics of neural networks. This is a component of the still-nascent topic of applying quantum computing to the modeling and simulations of biological and artificial neural networks. In this work, we show how a carefully constructed set of conditions can use two foundational quantum algorithms, Grover and Deutsch-Josza, in such a way that the output measurements admit an interpretation that guarantees we can infer if a simple representation of a neural network (which applies to both biological and artificial networks) after some period of time has the potential to continue sustaining dynamic activity. Or whether the dynamics are guaranteed to stop either through 'epileptic' dynamics or quiescence.
- Abstract(参考訳): 量子計算の新しい問題クラスの探索は研究の活発な領域である。
本質的に完全に探索されていないトピックは、量子アルゴリズムとコンピューティングを使用して、ニューラルネットワークの関数力学を探索し、疑問を問うことである。
これは、生体および人工ニューラルネットワークのモデリングとシミュレーションに量子コンピューティングを適用するという、まだ初期段階のトピックのコンポーネントである。
本研究では,ニューラルネットワークの簡単な表現(生体と人工のネットワークの両方に適用される)が一定時間後に持続する可能性を持つかどうかを,出力測定が保証する解釈を許容するように,慎重に構築された条件セットが,GroverとDeutsch-Joszaの2つの基本量子アルゴリズムを使用する方法を示す。
あるいは、この力学が「懐疑的」力学またはクエンスによって停止することが保証されているかどうか。
関連論文リスト
- Experimental neuromorphic computing based on quantum memristor [0.2618499987393917]
フォトニック量子メムリスタを用いた最初のニューロモルフィックアーキテクチャを報告する。
本稿では, 経験的フィードバックループが非線形性を高め, アルゴリズムの性能を向上することを示す。
論文 参考訳(メタデータ) (2025-04-25T21:03:19Z) - Identifying Protein Co-regulatory Network Logic by Solving B-SAT Problems through Gate-based Quantum Computing [0.0]
脳の哺乳類皮質領域の神経発達に関与する5つのタンパク質を結合するネットワークの構造とブール決定論理を同定する。
我々はGroverのアルゴリズムを用いて、決定論的古典アルゴリズムが必要とする指数時間複雑性よりも高速にNPハード問題を解く。
論文 参考訳(メタデータ) (2025-04-12T23:11:10Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Learning Quantum Processes with Memory -- Quantum Recurrent Neural
Networks [0.0]
本稿では,散逸性量子ニューラルネットワークに基づく完全量子リカレントニューラルネットワークを提案する。
これらのアルゴリズムが複雑な量子過程をメモリで学習する可能性を実証する。
数値シミュレーションにより、我々の量子リカレントニューラルネットワークは、小さなトレーニングセットから一般化する顕著な能力を示すことが示された。
論文 参考訳(メタデータ) (2023-01-19T16:58:39Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - Quantum Neural Networks -- Computational Field Theory and Dynamics [0.0]
量子人工ニューラルネットワークの力学系としての形式化が開発されている。
量子コンピュータ科学、量子複雑性研究、量子技術、神経科学にもその意味がある。
論文 参考訳(メタデータ) (2022-03-19T10:37:23Z) - Machine-learning assisted quantum control in random environment [3.8580539160777625]
本稿では,ニューラルネットワークに基づく機械学習アルゴリズムの概念実証と解析について紹介する。
畳み込みニューラルネットワークは、障害を認識できるため、この問題を解決可能であることを示す。
提案アルゴリズムの精度は障害パターンの高次元マッピングにより向上することを示した。
論文 参考訳(メタデータ) (2022-02-21T15:12:39Z) - Quantum activation functions for quantum neural networks [0.0]
情報を符号化する状態を測定することなく、必要な精度で解析関数を近似する方法を示す。
この結果は,ゲートモデル量子コンピュータのアーキテクチャにおける人工ニューラルネットワークの科学を再放送するものである。
論文 参考訳(メタデータ) (2022-01-10T23:55:49Z) - On quantum neural networks [91.3755431537592]
量子ニューラルネットワークの概念は、その最も一般的な関数の観点から定義されるべきである。
我々の推論は、量子力学におけるファインマン経路積分定式化の利用に基づいている。
論文 参考訳(メタデータ) (2021-04-12T18:30:30Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Variational learning for quantum artificial neural networks [0.0]
まず、量子プロセッサ上での人工ニューロンとフィードフォワードニューラルネットワークの実装について、最近の一連の研究を概説する。
次に、変分アンサンプリングプロトコルに基づく効率的な個別量子ノードのオリジナル実現を提案する。
メモリ効率の高いフィードフォワードアーキテクチャとの完全な互換性を維持しながら、単一ニューロンの活性化確率を決定するのに必要な量子回路深さを効果的に削減する。
論文 参考訳(メタデータ) (2021-03-03T16:10:15Z) - Quantum neural networks with deep residual learning [29.929891641757273]
本稿では,深層残留学習(resqnn)を用いた新しい量子ニューラルネットワークを提案する。
ResQNNは未知のユニタリを学び、驚くべきパフォーマンスを得ることができます。
論文 参考訳(メタデータ) (2020-12-14T18:11:07Z) - Quantum Deformed Neural Networks [83.71196337378022]
我々は,量子コンピュータ上で効率的に動作するように設計された新しい量子ニューラルネットワーク層を開発した。
入力状態の絡み合いに制限された場合、古典的なコンピュータでシミュレートすることができる。
論文 参考訳(メタデータ) (2020-10-21T09:46:12Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
グラフ型と量子系コヒーレンスの両方の要件を見つけるプロセスは自動化可能であることを示す。
この自動化は、特定のタイプの畳み込みニューラルネットワークを使用して、どのネットワークで、どのコヒーレンス要求の量子優位性が可能かを学習する。
我々の結果は、量子実験における利点の実証と、科学的研究と発見の自動化への道を開くために重要である。
論文 参考訳(メタデータ) (2020-01-15T18:36:53Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。