論文の概要: A Machine Learning Approach for Crop Yield and Disease Prediction Integrating Soil Nutrition and Weather Factors
- arxiv url: http://arxiv.org/abs/2403.19273v1
- Date: Thu, 28 Mar 2024 09:57:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 16:43:33.402852
- Title: A Machine Learning Approach for Crop Yield and Disease Prediction Integrating Soil Nutrition and Weather Factors
- Title(参考訳): 土壌栄養と気象因子を統合した作物収量・病気予測のための機械学習手法
- Authors: Forkan Uddin Ahmed, Annesha Das, Md Zubair,
- Abstract要約: バングラデシュにおける作物選択・病気予測のための知的農業意思決定支援システムの開発が主な目的である。
推奨されるアプローチは、作物の生産、土壌条件、農業・気象地域、作物病、気象要因に関する様々なデータセットを使用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of an intelligent agricultural decision-supporting system for crop selection and disease forecasting in Bangladesh is the main objective of this work. The economy of the nation depends heavily on agriculture. However, choosing crops with better production rates and efficiently controlling crop disease are obstacles that farmers have to face. These issues are addressed in this research by utilizing machine learning methods and real-world datasets. The recommended approach uses a variety of datasets on the production of crops, soil conditions, agro-meteorological regions, crop disease, and meteorological factors. These datasets offer insightful information on disease trends, soil nutrition demand of crops, and agricultural production history. By incorporating this knowledge, the model first recommends the list of primarily selected crops based on the soil nutrition of a particular user location. Then the predictions of meteorological variables like temperature, rainfall, and humidity are made using SARIMAX models. These weather predictions are then used to forecast the possibilities of diseases for the primary crops list by utilizing the support vector classifier. Finally, the developed model makes use of the decision tree regression model to forecast crop yield and provides a final crop list along with associated possible disease forecast. Utilizing the outcome of the model, farmers may choose the best productive crops as well as prevent crop diseases and reduce output losses by taking preventive actions. Consequently, planning and decision-making processes are supported and farmers can predict possible crop yields. Overall, by offering a detailed decision support system for crop selection and disease prediction, this work can play a vital role in advancing agricultural practices in Bangladesh.
- Abstract(参考訳): バングラデシュにおける作物選択・病気予測のための知的農業意思決定支援システムの開発が主な目的である。
国の経済は農業に大きく依存している。
しかし、より生産率の高い作物を選択し、作物病を効果的にコントロールすることは、農家が直面する障害である。
これらの課題は、機械学習手法と実世界のデータセットを利用することによって解決される。
推奨されるアプローチは、作物の生産、土壌条件、農業・気象地域、作物病、気象要因に関する様々なデータセットを使用する。
これらのデータセットは、病気の傾向、作物の土壌栄養需要、農業生産の歴史に関する洞察に富んだ情報を提供する。
この知識を取り入れたモデルでは、まず、特定のユーザ位置の土壌栄養に基づいて、主に選択された作物のリストを推奨する。
次に、SARIMAXモデルを用いて、気温、降雨、湿度などの気象変数の予測を行う。
これらの天気予報は、支援ベクトル分類器を用いて、一次作物リストの病気の可能性を予測するために使用される。
最後に, 決定木回帰モデルを用いて作物の収量予測を行い, 関連する病気予測とともに最終作物リストを提供する。
モデルの結果を利用して、農家は最適な生産作物を選択し、作物病を予防し、予防措置をとることで生産損失を減らすことができる。
その結果、計画と意思決定のプロセスが支持され、農家は収穫の可能性を予測できる。
総じて、作物の選択と病気予測のための詳細な意思決定支援システムを提供することで、バングラデシュにおける農業の実践を促進する上で重要な役割を担っている。
関連論文リスト
- Anticipatory Understanding of Resilient Agriculture to Climate [66.008020515555]
本稿では,リモートセンシング,深層学習,作物収量モデリング,食品流通システムの因果モデリングを組み合わせることで,食品のセキュリティホットスポットをよりよく識別する枠組みを提案する。
我々は、世界の人口の大部分を供給している北インドの小麦パンバスケットの分析に焦点をあてる。
論文 参考訳(メタデータ) (2024-11-07T22:29:05Z) - Explainability of Sub-Field Level Crop Yield Prediction using Remote Sensing [6.65506917941232]
本研究では,アルゼンチン,ウルグアイ,ドイツにおけるダイズ,小麦,ラピセド作物の収量予測の課題に焦点をあてる。
我々の目標は、衛星画像の大規模なデータセット、追加のデータモダリティ、収量マップを用いて、これらの作物の予測モデルを開発し、説明することである。
モデル説明可能性について,入力特徴量の定量化,重要な成長段階の同定,フィールドレベルでの収量変動の解析,精度の低い予測を行う。
論文 参考訳(メタデータ) (2024-07-11T08:23:46Z) - Artificial Immune System of Secure Face Recognition Against Adversarial Attacks [67.31542713498627]
昆虫生産には 最大限の可能性を実現するために 最適化が必要です
これは選択的育種による興味のある形質の改善が目的である。
このレビューは、様々な分野の知識と、動物の繁殖、定量的遺伝学、進化生物学、昆虫学のギャップを埋めるものである。
論文 参考訳(メタデータ) (2024-06-26T07:50:58Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
このモデルは, 植物の成長段階, 土壌条件の多様性, 照明条件の異なるランダム化フィールド配置をシミュレートすることができる。
我々のデータセットにはセマンティックラベル付き12,000の画像が含まれており、精密農業におけるコンピュータビジョンタスクの包括的なリソースを提供する。
論文 参考訳(メタデータ) (2024-03-27T08:42:47Z) - Agricultural Recommendation System based on Deep Learning: A Multivariate Weather Forecasting Approach [1.756503402823037]
本稿では,天気予報モデルを用いたコンテキスト型作物推薦システムを提案する。
提案された気象モデルでは、バングラデシュの任意の場所で降雨、気温、湿度、日差しを予測でき、平均 R-Squared 値は 0.9824 である。
このシステムは、洪水や干ばつが生ずる地域に対する知識に基づく作物の提案にも長けている。
論文 参考訳(メタデータ) (2024-01-21T06:33:45Z) - Climate Change Impact on Agricultural Land Suitability: An Interpretable
Machine Learning-Based Eurasia Case Study [94.07737890568644]
2021年現在、世界中で約8億8800万人が飢餓と栄養失調に見舞われている。
気候変動は農地の適性に大きな影響を及ぼし、深刻な食糧不足に繋がる可能性がある。
本研究は,経済・社会問題に苦しむ中央ユーラシアを対象とする。
論文 参考訳(メタデータ) (2023-10-24T15:15:28Z) - Machine Learning-based Nutrient Application's Timeline Recommendation
for Smart Agriculture: A Large-Scale Data Mining Approach [0.0]
不正確な肥料の用途の決定は、コストのかかる結果をもたらし、食糧生産を妨げ、環境に害を与える可能性がある。
そこで本研究では, 年間を通じて必要な肥料量を決定することにより, 栄養素の応用を予測する方法を提案する。
提案手法は, 費用対効果と環境に優しい農業を促進するため, 気象条件と土壌特性に基づく肥料量の調整を推奨する。
論文 参考訳(メタデータ) (2023-10-18T15:37:19Z) - A Deep Neural Network Approach for Crop Selection and Yield Prediction
in Bangladesh [0.0]
本稿では,最小コストと労力で作物の選別と収量予測の最良の方法を示す。
本稿では,農業作物の選択と収量予測にディープニューラルネットワークを用いることを提案する。
論文 参考訳(メタデータ) (2021-08-06T22:25:46Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
我々は,機械モデリングと衛星データ利用の並列化を活用し,作物生産性の高度モニタリングを行う。
本モデルでは, 地域情報を使用しなくても, 各種C3作物の種類, 環境条件の総合的生産性を推定することに成功した。
これは、現在の地球観測クラウドコンピューティングプラットフォームの助けを借りて、新しい衛星センサーから作物の生産性をグローバルにマップする可能性を強調しています。
論文 参考訳(メタデータ) (2020-12-07T16:23:13Z) - Learning from Data to Optimize Control in Precision Farming [77.34726150561087]
特集は、統計的推論、機械学習、精密農業のための最適制御における最新の発展を示す。
衛星の位置決めとナビゲーションとそれに続くInternet-of-Thingsは、リアルタイムで農業プロセスの最適化に使用できる膨大な情報を生成する。
論文 参考訳(メタデータ) (2020-07-07T12:44:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。