論文の概要: Infrared Small Target Detection with Scale and Location Sensitivity
- arxiv url: http://arxiv.org/abs/2403.19366v1
- Date: Thu, 28 Mar 2024 12:28:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 16:24:00.677241
- Title: Infrared Small Target Detection with Scale and Location Sensitivity
- Title(参考訳): スケールと位置感度による赤外小ターゲット検出
- Authors: Qiankun Liu, Rui Liu, Bolun Zheng, Hongkui Wang, Ying Fu,
- Abstract要約: 本稿では,より効率的な損失を伴い,より単純なモデル構造で検出性能を向上させることに焦点を当てる。
具体的には、まず、既存の損失の限界に対応するために、新しいスケール・アンド・ロケーション・センシティブ(SLS)損失を提案する。
予測の規模毎にSLS損失を適用することで、MSHNetは既存の最先端手法よりも大きなマージンで性能を向上する。
- 参考スコア(独自算出の注目度): 19.89762494490961
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recently, infrared small target detection (IRSTD) has been dominated by deep-learning-based methods. However, these methods mainly focus on the design of complex model structures to extract discriminative features, leaving the loss functions for IRSTD under-explored. For example, the widely used Intersection over Union (IoU) and Dice losses lack sensitivity to the scales and locations of targets, limiting the detection performance of detectors. In this paper, we focus on boosting detection performance with a more effective loss but a simpler model structure. Specifically, we first propose a novel Scale and Location Sensitive (SLS) loss to handle the limitations of existing losses: 1) for scale sensitivity, we compute a weight for the IoU loss based on target scales to help the detector distinguish targets with different scales: 2) for location sensitivity, we introduce a penalty term based on the center points of targets to help the detector localize targets more precisely. Then, we design a simple Multi-Scale Head to the plain U-Net (MSHNet). By applying SLS loss to each scale of the predictions, our MSHNet outperforms existing state-of-the-art methods by a large margin. In addition, the detection performance of existing detectors can be further improved when trained with our SLS loss, demonstrating the effectiveness and generalization of our SLS loss. The code is available at https://github.com/ying-fu/MSHNet.
- Abstract(参考訳): 近年,赤外線小目標検出 (IRSTD) はディープラーニング方式が主流となっている。
しかし、これらの手法は主に識別的特徴を抽出する複雑なモデル構造の設計に重点を置いており、IRSTDの損失関数は未探索のままである。
例えば、広く使われているIoU(Intersection over Union)とDiceの損失は目標の規模や位置に対する感度に欠けており、検出器の検出性能が制限されている。
本稿では,より効率的な損失を伴い,より単純なモデル構造で検出性能を向上させることに焦点を当てる。
具体的には、まず、既存の損失の限界に対応するために、新しいスケール・アンド・ロケーション・センシティブ(SLS)損失を提案する。
1)IoU損失の重みを目標スケールに基づいて計算し,測定器が目標を異なるスケールで識別するのに役立つ。
2) 位置感度では, 目標の中心点に基づくペナルティ項を導入し, より正確に目標をローカライズする。
そこで我々は,平易なU-Net(MSHNet)に単純なマルチスケールヘッドを設計する。
予測の規模毎にSLS損失を適用することで、MSHNetは既存の最先端手法よりも大きなマージンで性能を向上する。
さらに、既存の検出器の検出性能は、SLS損失のトレーニングによりさらに向上し、SLS損失の有効性と一般化を実証することができる。
コードはhttps://github.com/ying-fu/MSHNetで公開されている。
関連論文リスト
- Robust infrared small target detection using self-supervised and a contrario paradigms [1.2224547302812558]
我々は、赤外線小ターゲット検出(IRSTD)を改善するために、コントラリオパラダイムと自己監視学習(SSL)を組み合わせた新しいアプローチを導入する。
一方、YOLO検出ヘッドへの対向基準の統合は、誤報を効果的に制御しつつ、小型で予期せぬ物体に対する特徴マップ応答を高める。
本研究は, YOLOを用いた小型物体検出に適用した場合, インスタンス識別手法がマスク画像モデリング手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-10-09T21:08:57Z) - Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery [51.83786195178233]
我々は、効率的な特徴抽出の観点から再正規化群理論を実装するために、知識発見ネットワーク(KDN)を設計する。
KDN上の再正規化接続(RC)は、マルチスケール特徴の「相乗的焦点」を可能にする。
RCはFPNベースの検出器のマルチレベル特徴の分割・対数機構を幅広いスケールで予測されたタスクに拡張する。
論文 参考訳(メタデータ) (2024-09-09T13:56:22Z) - Infrared Small Target Detection based on Adjustable Sensitivity Strategy and Multi-Scale Fusion [2.661766509317245]
調整可能な感度(AS)戦略とマルチスケール融合に基づく改良された赤外線小ターゲット検出手法を提案する。
具体的には、マルチスケール方向対応ネットワーク(MSDA-Net)に基づくマルチスケールモデル融合フレームワークを構築する。
このスキームは、PRCV 2024ワイドエリア赤外線小目標検出競技で優勝した。
論文 参考訳(メタデータ) (2024-07-29T15:22:02Z) - Better Sampling, towards Better End-to-end Small Object Detection [7.7473020808686694]
限られた特性と高密度と相互重なり合いのため、小さな物体検出は不満足なままである。
エンド・ツー・エンド・フレームワークにおけるサンプリングの強化手法を提案する。
我々のモデルは、VisDroneデータセット上での最先端(SOTA)よりも平均精度(AP)が2.9%向上することを示す。
論文 参考訳(メタデータ) (2024-05-17T04:37:44Z) - Efficient Meta-Learning Enabled Lightweight Multiscale Few-Shot Object Detection in Remote Sensing Images [15.12889076965307]
YOLOv7ワンステージ検出器は、新しいメタラーニングトレーニングフレームワークが組み込まれている。
この変換により、検出器はFSODのタスクに十分対応できると同時に、その固有の軽量化の利点を活かすことができる。
提案検出器の有効性を検証するため, 現状の検出器と性能比較を行った。
論文 参考訳(メタデータ) (2024-04-29T04:56:52Z) - SpirDet: Towards Efficient, Accurate and Lightweight Infrared Small
Target Detector [60.42293239557962]
我々は、赤外線小ターゲットの効率的な検出のための新しいアプローチであるSpirDetを提案する。
新しいデュアルブランチスパースデコーダを用いて特徴写像を復元する。
大規模な実験により、提案されたSpirDetは最先端モデルよりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2024-02-08T05:06:14Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - One-Stage Cascade Refinement Networks for Infrared Small Target
Detection [21.28595135499812]
SIRST(Single-frame InfraRed Small Target)検出は、固有の特性の欠如による課題である。
実世界の高解像度単一フレームターゲットのSIRST-V2データセットからなる赤外線小ターゲット検出のための新しい研究ベンチマークを提案する。
論文 参考訳(メタデータ) (2022-12-16T13:37:23Z) - SALISA: Saliency-based Input Sampling for Efficient Video Object
Detection [58.22508131162269]
ビデオオブジェクト検出のための新しい一様SALiencyベースの入力SAmpling技術であるSALISAを提案する。
SALISAは小物体の検出を著しく改善することを示す。
論文 参考訳(メタデータ) (2022-04-05T17:59:51Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
本稿では,SkewIoU損失とトレンドレベルアライメントを両立できる近似的損失を考案する上で,有効な方法の1つとして論じる。
具体的には、対象をガウス分布としてモデル化し、SkewIoUのメカニズムを本質的に模倣するためにカルマンフィルタを採用する。
KFIoUと呼ばれる新たな損失は実装が容易で、正確なSkewIoUよりもうまく動作する。
論文 参考訳(メタデータ) (2022-01-29T10:54:57Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
本稿では,分類に基づく比較的研究の少ない方法論について検討する。
我々は2つの側面でフロンティアを推し進めるための新しい手法を提案する。
航空画像のための大規模公開データセットの実験と視覚解析は,我々のアプローチの有効性を示している。
論文 参考訳(メタデータ) (2020-11-19T05:42:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。