論文の概要: Robust infrared small target detection using self-supervised and a contrario paradigms
- arxiv url: http://arxiv.org/abs/2410.07437v1
- Date: Wed, 9 Oct 2024 21:08:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 17:06:37.659374
- Title: Robust infrared small target detection using self-supervised and a contrario paradigms
- Title(参考訳): 自己監督と対極的パラダイムを用いたロバスト赤外小目標検出
- Authors: Alina Ciocarlan, Sylvie Le Hégarat-Mascle, Sidonie Lefebvre, Arnaud Woiselle,
- Abstract要約: 我々は、赤外線小ターゲット検出(IRSTD)を改善するために、コントラリオパラダイムと自己監視学習(SSL)を組み合わせた新しいアプローチを導入する。
一方、YOLO検出ヘッドへの対向基準の統合は、誤報を効果的に制御しつつ、小型で予期せぬ物体に対する特徴マップ応答を高める。
本研究は, YOLOを用いた小型物体検出に適用した場合, インスタンス識別手法がマスク画像モデリング手法より優れていることを示す。
- 参考スコア(独自算出の注目度): 1.2224547302812558
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting small targets in infrared images poses significant challenges in defense applications due to the presence of complex backgrounds and the small size of the targets. Traditional object detection methods often struggle to balance high detection rates with low false alarm rates, especially when dealing with small objects. In this paper, we introduce a novel approach that combines a contrario paradigm with Self-Supervised Learning (SSL) to improve Infrared Small Target Detection (IRSTD). On the one hand, the integration of an a contrario criterion into a YOLO detection head enhances feature map responses for small and unexpected objects while effectively controlling false alarms. On the other hand, we explore SSL techniques to overcome the challenges of limited annotated data, common in IRSTD tasks. Specifically, we benchmark several representative SSL strategies for their effectiveness in improving small object detection performance. Our findings show that instance discrimination methods outperform masked image modeling strategies when applied to YOLO-based small object detection. Moreover, the combination of the a contrario and SSL paradigms leads to significant performance improvements, narrowing the gap with state-of-the-art segmentation methods and even outperforming them in frugal settings. This two-pronged approach offers a robust solution for improving IRSTD performance, particularly under challenging conditions.
- Abstract(参考訳): 赤外線画像における小さなターゲットの検出は、複雑な背景とターゲットの小さなサイズがあるため、防衛用途において大きな課題となる。
従来の物体検出法は、特に小さな物体を扱う場合、高い検出率と低い誤報率のバランスをとるのに苦労することが多い。
本稿では、赤外線小ターゲット検出(IRSTD)を改善するために、コントラリオパラダイムと自己監視学習(SSL)を組み合わせた新しいアプローチを提案する。
一方、YOLO検出ヘッドへの対向基準の統合は、誤報を効果的に制御しつつ、小型で予期せぬ物体に対する特徴マップ応答を高める。
一方、IRSTDタスクに共通する制限付きアノテートデータの課題を克服するため、SSL技術について検討する。
具体的には、小さなオブジェクト検出性能を改善するために、いくつかのSSL戦略をベンチマークする。
本研究は, YOLOを用いた小型物体検出に適用した場合, インスタンス識別手法がマスク画像モデリング手法より優れていることを示す。
さらに、コントラリオとSSLのパラダイムを組み合わせることで、パフォーマンスが大幅に向上し、最先端のセグメンテーションメソッドとのギャップが狭まり、フラガアルな設定でもパフォーマンスが向上する。
この2段階のアプローチは、特に困難な条件下で、IRSTD性能を改善するための堅牢なソリューションを提供する。
関連論文リスト
- Effective and Efficient Adversarial Detection for Vision-Language Models via A Single Vector [97.92369017531038]
Diverse hArmful Responses (RADAR) を用いた新しい laRge-scale Adervsarial 画像データセットを構築した。
そこで我々は,視覚言語モデル (VLM) の隠れ状態から抽出した1つのベクトルを利用して,入力中の良質な画像に対して対向画像を検出する,新しいiN時間埋め込み型AdveRSarial Image Detectction (NEARSIDE) 法を開発した。
論文 参考訳(メタデータ) (2024-10-30T10:33:10Z) - Sparse Prior Is Not All You Need: When Differential Directionality Meets Saliency Coherence for Infrared Small Target Detection [15.605122893098981]
本研究では,Sparse Differential Directionality prior (SDD)フレームワークを提案する。
我々は、ターゲットの異なる方向特性を活用して、それらを背景と区別する。
さらに、サリエンシ・コヒーレンス・ストラテジーにより、目標検出性をさらに強化する。
近似交互最小化法(PAM)アルゴリズムは,提案したモデルを効率的に解く。
論文 参考訳(メタデータ) (2024-07-22T04:32:43Z) - Better Sampling, towards Better End-to-end Small Object Detection [7.7473020808686694]
限られた特性と高密度と相互重なり合いのため、小さな物体検出は不満足なままである。
エンド・ツー・エンド・フレームワークにおけるサンプリングの強化手法を提案する。
我々のモデルは、VisDroneデータセット上での最先端(SOTA)よりも平均精度(AP)が2.9%向上することを示す。
論文 参考訳(メタデータ) (2024-05-17T04:37:44Z) - Infrared Small Target Detection with Scale and Location Sensitivity [19.89762494490961]
本稿では,より効率的な損失を伴い,より単純なモデル構造で検出性能を向上させることに焦点を当てる。
具体的には、まず、既存の損失の限界に対応するために、新しいスケール・アンド・ロケーション・センシティブ(SLS)損失を提案する。
予測の規模毎にSLS損失を適用することで、MSHNetは既存の最先端手法よりも大きなマージンで性能を向上する。
論文 参考訳(メタデータ) (2024-03-28T12:28:58Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
単一フレーム赤外線小ターゲット検出(SIRST)は、乱雑な背景から小さなターゲットを認識することを目的としている。
Transformerの開発に伴い、SIRSTモデルのスケールは常に増大している。
赤外線小ターゲットデータの多彩な多様性により,本アルゴリズムはモデル性能と収束速度を大幅に改善する。
論文 参考訳(メタデータ) (2024-03-08T16:14:54Z) - $\textit{A Contrario}$ Paradigm for YOLO-based Infrared Small Target
Detection [0.9374652839580183]
YOLO検出器のトレーニングに$textita contrario$ decision criterionを導入する。
後者は、textitunexpectedness$の小さなターゲットを利用して、それらを複雑な背景から識別する。
論文 参考訳(メタデータ) (2024-02-03T23:02:02Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - Enhancing Infrared Small Target Detection Robustness with Bi-Level
Adversarial Framework [61.34862133870934]
本稿では,異なる汚職の存在下での検出の堅牢性を促進するために,二段階の対向的枠組みを提案する。
我々の手法は広範囲の汚職で21.96%のIOUを著しく改善し、特に一般ベンチマークで4.97%のIOUを推進している。
論文 参考訳(メタデータ) (2023-09-03T06:35:07Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Progressive Object Transfer Detection [84.48927705173494]
本稿では,新しいプログレッシブオブジェクト転送検出(POTD)フレームワークを提案する。
第一に、POTDは様々なドメインの様々なオブジェクトを効果的にプログレッシブな検出手順に活用することができる。
第2に、POTDは2つの微妙な転送段階、すなわち、LSTD(low-Shot Transfer Detection)とWSTD(Weakly Supervised Transfer Detection)から構成される。
論文 参考訳(メタデータ) (2020-02-12T00:16:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。