Hierarchical Deep Learning for Intention Estimation of Teleoperation Manipulation in Assembly Tasks
- URL: http://arxiv.org/abs/2403.19770v1
- Date: Thu, 28 Mar 2024 18:45:43 GMT
- Title: Hierarchical Deep Learning for Intention Estimation of Teleoperation Manipulation in Assembly Tasks
- Authors: Mingyu Cai, Karankumar Patel, Soshi Iba, Songpo Li,
- Abstract summary: In human-robot collaboration, shared control presents an opportunity to teleoperate robotic manipulation to improve the efficiency of manufacturing and assembly processes.
To this end, robust and prompt intention estimation is needed, relying on behavioral observations.
The framework presents an intention estimation technique at hierarchical levels i.e., low-level actions and high-level tasks, by incorporating multi-scale hierarchical information in neural networks.
An analysis of the predictive power with various inputs demonstrates the predominance of the deep hierarchical model in the sense of prediction accuracy and early intention identification.
- Score: 2.4913500484755087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In human-robot collaboration, shared control presents an opportunity to teleoperate robotic manipulation to improve the efficiency of manufacturing and assembly processes. Robots are expected to assist in executing the user's intentions. To this end, robust and prompt intention estimation is needed, relying on behavioral observations. The framework presents an intention estimation technique at hierarchical levels i.e., low-level actions and high-level tasks, by incorporating multi-scale hierarchical information in neural networks. Technically, we employ hierarchical dependency loss to boost overall accuracy. Furthermore, we propose a multi-window method that assigns proper hierarchical prediction windows of input data. An analysis of the predictive power with various inputs demonstrates the predominance of the deep hierarchical model in the sense of prediction accuracy and early intention identification. We implement the algorithm on a virtual reality (VR) setup to teleoperate robotic hands in a simulation with various assembly tasks to show the effectiveness of online estimation.
Related papers
- Inductive Learning of Robot Task Knowledge from Raw Data and Online Expert Feedback [3.10979520014442]
An increasing level of autonomy of robots poses challenges of trust and social acceptance, especially in human-robot interaction scenarios.
This requires an interpretable implementation of robotic cognitive capabilities, possibly based on formal methods as logics for the definition of task specifications.
We propose an offline algorithm based on inductive logic programming from noisy examples to extract task specifications.
arXiv Detail & Related papers (2025-01-13T17:25:46Z) - Autonomous Behavior Planning For Humanoid Loco-manipulation Through Grounded Language Model [6.9268843428933025]
Large language models (LLMs) have demonstrated powerful planning and reasoning capabilities for comprehension and processing of semantic information.
We propose a novel language-model based framework that enables robots to autonomously plan behaviors and low-level execution under given textual instructions.
arXiv Detail & Related papers (2024-08-15T17:33:32Z) - Learning Manipulation by Predicting Interaction [85.57297574510507]
We propose a general pre-training pipeline that learns Manipulation by Predicting the Interaction.
The experimental results demonstrate that MPI exhibits remarkable improvement by 10% to 64% compared with previous state-of-the-art in real-world robot platforms.
arXiv Detail & Related papers (2024-06-01T13:28:31Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
Social robot navigation can be helpful in various contexts of daily life but requires safe human-robot interactions and efficient trajectory planning.
We propose a systematic relational reasoning approach with explicit inference of the underlying dynamically evolving relational structures.
We demonstrate its effectiveness for multi-agent trajectory prediction and social robot navigation.
arXiv Detail & Related papers (2024-01-22T18:58:22Z) - LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
We propose a learnable Perception-Action-Communication (LPAC) architecture for the problem.
CNN processes localized perception; a graph neural network (GNN) facilitates robot communications.
Evaluations show that the LPAC models outperform standard decentralized and centralized coverage control algorithms.
arXiv Detail & Related papers (2024-01-10T00:08:00Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
We introduce RoboFuME, a reset-free fine-tuning system for robotic reinforcement learning.
Our insights are to utilize offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy.
Our method can incorporate data from an existing robot dataset and improve on a target task within as little as 3 hours of autonomous real-world experience.
arXiv Detail & Related papers (2023-10-23T17:50:08Z) - A Control-Centric Benchmark for Video Prediction [69.22614362800692]
We propose a benchmark for action-conditioned video prediction in the form of a control benchmark.
Our benchmark includes simulated environments with 11 task categories and 310 task instance definitions.
We then leverage our benchmark to study the effects of scaling model size, quantity of training data, and model ensembling.
arXiv Detail & Related papers (2023-04-26T17:59:45Z) - Active Exploration for Robotic Manipulation [40.39182660794481]
This paper proposes a model-based active exploration approach that enables efficient learning in sparse-reward robotic manipulation tasks.
We evaluate our proposed algorithm in simulation and on a real robot, trained from scratch with our method.
arXiv Detail & Related papers (2022-10-23T18:07:51Z) - Addressing Data Scarcity in Multimodal User State Recognition by
Combining Semi-Supervised and Supervised Learning [1.1688030627514532]
We present a multimodal machine learning approach for detecting dis-/agreement and confusion states in a human-robot interaction environment.
We achieve an average F1-score of 81.1% for dis-/agreement detection with a small amount of labeled data and a large unlabeled data set.
arXiv Detail & Related papers (2022-02-08T10:41:41Z) - Using Deep Learning to Bootstrap Abstractions for Hierarchical Robot
Planning [27.384742641275228]
We present a new approach for bootstrapping the entire hierarchical planning process.
It shows how abstract states and actions for new environments can be computed automatically.
It uses the learned abstractions in a novel multi-source bi-directional hierarchical robot planning algorithm.
arXiv Detail & Related papers (2022-02-02T08:11:20Z) - Graph Neural Networks for Decentralized Multi-Robot Submodular Action
Selection [101.38634057635373]
We focus on applications where robots are required to jointly select actions to maximize team submodular objectives.
We propose a general-purpose learning architecture towards submodular at scale, with decentralized communications.
We demonstrate the performance of our GNN-based learning approach in a scenario of active target coverage with large networks of robots.
arXiv Detail & Related papers (2021-05-18T15:32:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.