Coverage-Guaranteed Prediction Sets for Out-of-Distribution Data
- URL: http://arxiv.org/abs/2403.19950v1
- Date: Fri, 29 Mar 2024 03:16:29 GMT
- Title: Coverage-Guaranteed Prediction Sets for Out-of-Distribution Data
- Authors: Xin Zou, Weiwei Liu,
- Abstract summary: Splital prediction ( SCP) is an efficient framework for handling the confidence set prediction problem.
We show that trivially applying SCP results in a failure to maintain the marginal coverage when the unseen target domain is different from the source domain.
We develop a method for forming confident prediction sets in the OOD setting and theoretically prove the validity of our method.
- Score: 11.416180794737203
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Out-of-distribution (OOD) generalization has attracted increasing research attention in recent years, due to its promising experimental results in real-world applications. In this paper,we study the confidence set prediction problem in the OOD generalization setting. Split conformal prediction (SCP) is an efficient framework for handling the confidence set prediction problem. However, the validity of SCP requires the examples to be exchangeable, which is violated in the OOD setting. Empirically, we show that trivially applying SCP results in a failure to maintain the marginal coverage when the unseen target domain is different from the source domain. To address this issue, we develop a method for forming confident prediction sets in the OOD setting and theoretically prove the validity of our method. Finally, we conduct experiments on simulated data to empirically verify the correctness of our theory and the validity of our proposed method.
Related papers
- Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning [53.42244686183879]
Conformal prediction provides model-agnostic and distribution-free uncertainty quantification.
Yet, conformal prediction is not reliable under poisoning attacks where adversaries manipulate both training and calibration data.
We propose reliable prediction sets (RPS): the first efficient method for constructing conformal prediction sets with provable reliability guarantees under poisoning.
arXiv Detail & Related papers (2024-10-13T15:37:11Z) - Beyond Conformal Predictors: Adaptive Conformal Inference with Confidence Predictors [0.0]
Conformal prediction requires exchangeable data to ensure valid prediction sets at a user-specified significance level.
Adaptive conformal inference (ACI) was introduced to address this limitation.
We show that ACI does not require the use of conformal predictors; instead, it can be implemented with the more general confidence predictors.
arXiv Detail & Related papers (2024-09-23T21:02:33Z) - Robust Conformal Prediction Using Privileged Information [17.886554223172517]
We develop a method to generate prediction sets with a guaranteed coverage rate that is robust to corruptions in the training data.
Our approach builds on conformal prediction, a powerful framework to construct prediction sets that are valid under the i.i.d assumption.
arXiv Detail & Related papers (2024-06-08T08:56:47Z) - Conformal Prediction with Learned Features [22.733758606168873]
We propose Partition Learning Conformal Prediction (PLCP) to improve conditional validity of prediction sets.
We implement PLCP efficiently with gradient alternating descent, utilizing off-the-shelf machine learning models.
Our experimental results over four real-world and synthetic datasets show the superior performance of PLCP.
arXiv Detail & Related papers (2024-04-26T15:43:06Z) - Revisiting Confidence Estimation: Towards Reliable Failure Prediction [53.79160907725975]
We find a general, widely existing but actually-neglected phenomenon that most confidence estimation methods are harmful for detecting misclassification errors.
We propose to enlarge the confidence gap by finding flat minima, which yields state-of-the-art failure prediction performance.
arXiv Detail & Related papers (2024-03-05T11:44:14Z) - Source-Free Unsupervised Domain Adaptation with Hypothesis Consolidation
of Prediction Rationale [53.152460508207184]
Source-Free Unsupervised Domain Adaptation (SFUDA) is a challenging task where a model needs to be adapted to a new domain without access to target domain labels or source domain data.
This paper proposes a novel approach that considers multiple prediction hypotheses for each sample and investigates the rationale behind each hypothesis.
To achieve the optimal performance, we propose a three-step adaptation process: model pre-adaptation, hypothesis consolidation, and semi-supervised learning.
arXiv Detail & Related papers (2024-02-02T05:53:22Z) - Efficient Conformal Prediction under Data Heterogeneity [79.35418041861327]
Conformal Prediction (CP) stands out as a robust framework for uncertainty quantification.
Existing approaches for tackling non-exchangeability lead to methods that are not computable beyond the simplest examples.
This work introduces a new efficient approach to CP that produces provably valid confidence sets for fairly general non-exchangeable data distributions.
arXiv Detail & Related papers (2023-12-25T20:02:51Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
Conformal prediction is emerging as a popular paradigm for providing rigorous uncertainty quantification in machine learning.
In this paper, we extend conformal prediction to the federated learning setting.
We propose a weaker notion of partial exchangeability, better suited to the FL setting, and use it to develop the Federated Conformal Prediction framework.
arXiv Detail & Related papers (2023-05-27T19:57:27Z) - Robust Validation: Confident Predictions Even When Distributions Shift [19.327409270934474]
We describe procedures for robust predictive inference, where a model provides uncertainty estimates on its predictions rather than point predictions.
We present a method that produces prediction sets (almost exactly) giving the right coverage level for any test distribution in an $f$-divergence ball around the training population.
An essential component of our methodology is to estimate the amount of expected future data shift and build robustness to it.
arXiv Detail & Related papers (2020-08-10T17:09:16Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
We study the counterfactual prediction task in the setting where all relevant factors are captured in the historical data.
We propose a doubly-robust procedure for learning counterfactual prediction models in this setting.
arXiv Detail & Related papers (2020-06-30T15:49:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.