Extracting Manifold Information from Point Clouds
- URL: http://arxiv.org/abs/2404.00427v1
- Date: Sat, 30 Mar 2024 17:21:07 GMT
- Title: Extracting Manifold Information from Point Clouds
- Authors: Patrick Guidotti,
- Abstract summary: A kernel based method is proposed for the construction of signature functions of subsets of $mathbbRd$.
The analytical and analysis of point clouds are the main application.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A kernel based method is proposed for the construction of signature (defining) functions of subsets of $\mathbb{R}^d$. The subsets can range from full dimensional manifolds (open subsets) to point clouds (a finite number of points) and include bounded smooth manifolds of any codimension. The interpolation and analysis of point clouds are the main application. Two extreme cases in terms of regularity are considered, where the data set is interpolated by an analytic surface, at the one extreme, and by a H\"older continuous surface, at the other. The signature function can be computed as a linear combination of translated kernels, the coefficients of which are the solution of a finite dimensional linear problem. Once it is obtained, it can be used to estimate the dimension as well as the normal and the curvatures of the interpolated surface. The method is global and does not require explicit knowledge of local neighborhoods or any other structure present in the data set. It admits a variational formulation with a natural ``regularized'' counterpart, that proves to be useful in dealing with data sets corrupted by numerical error or noise. The underlying analytical structure of the approach is presented in general before it is applied to the case of point clouds.
Related papers
- Registration of algebraic varieties using Riemannian optimization [0.0]
We consider the problem of finding a transformation between two point clouds that represent the same object but are expressed in different coordinate systems.
Our approach is not based on a point-to-point correspondence, matching every point in the source point cloud to a point in the target point cloud.
arXiv Detail & Related papers (2024-01-16T18:47:38Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
The reliability of graph embeddings depends on how much the geometry of the continuous space matches the graph structure.
We introduce a new class of manifold, named soft manifold, that can solve this situation.
Using soft manifold for graph embedding, we can provide continuous spaces to pursue any task in data analysis over complex datasets.
arXiv Detail & Related papers (2023-11-29T12:48:33Z) - Efficient Graph Field Integrators Meet Point Clouds [59.27295475120132]
We present two new classes of algorithms for efficient field integration on graphs encoding point clouds.
The first class, SeparatorFactorization(SF), leverages the bounded genus of point cloud mesh graphs, while the second class, RFDiffusion(RFD), uses popular epsilon-nearest-neighbor graph representations for point clouds.
arXiv Detail & Related papers (2023-02-02T08:33:36Z) - Wasserstein Archetypal Analysis [9.54262011088777]
Archetypal analysis is an unsupervised machine learning method that summarizes data using a convex polytope.
We consider an alternative formulation of archetypal analysis based on the Wasserstein metric.
arXiv Detail & Related papers (2022-10-25T19:50:09Z) - Sinusoidal Sensitivity Calculation for Line Segment Geometries [0.0]
This paper presents a closed-form solution to the sinusoidal coil sensitivity model proposed by Kern et al.
It allows for precise computations of varied, simulated bias fields for ground-truth debias datasets.
arXiv Detail & Related papers (2022-08-05T09:30:55Z) - The decomposition of the higher-order homology embedding constructed
from the $k$-Laplacian [5.076419064097734]
The null space of the $k$-th order Laplacian $mathbfmathcal L_k$ encodes the non-trivial topology of a manifold or a network.
We propose an algorithm to factorize the homology embedding into subspaces corresponding to a manifold's simplest topological components.
arXiv Detail & Related papers (2021-07-23T00:40:01Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
dimensionality reduction methods provide a valuable means to visualize and interpret high-dimensional data.
Many popular methods can fail dramatically, even on simple two-dimensional Manifolds.
This paper presents an embedding method for a novel, incremental tangent space estimator that incorporates global structure as coordinates.
Empirically, we show our algorithm recovers novel and interesting embeddings on real-world and synthetic datasets.
arXiv Detail & Related papers (2020-07-07T10:04:28Z) - Convex Geometry and Duality of Over-parameterized Neural Networks [70.15611146583068]
We develop a convex analytic approach to analyze finite width two-layer ReLU networks.
We show that an optimal solution to the regularized training problem can be characterized as extreme points of a convex set.
In higher dimensions, we show that the training problem can be cast as a finite dimensional convex problem with infinitely many constraints.
arXiv Detail & Related papers (2020-02-25T23:05:33Z) - Improved guarantees and a multiple-descent curve for Column Subset
Selection and the Nystr\"om method [76.73096213472897]
We develop techniques which exploit spectral properties of the data matrix to obtain improved approximation guarantees.
Our approach leads to significantly better bounds for datasets with known rates of singular value decay.
We show that both our improved bounds and the multiple-descent curve can be observed on real datasets simply by varying the RBF parameter.
arXiv Detail & Related papers (2020-02-21T00:43:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.