論文の概要: Verifying Claims About Metaphors with Large-Scale Automatic Metaphor Identification
- arxiv url: http://arxiv.org/abs/2404.01029v1
- Date: Mon, 1 Apr 2024 10:17:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 22:47:02.556119
- Title: Verifying Claims About Metaphors with Large-Scale Automatic Metaphor Identification
- Title(参考訳): 大規模自動メタファー識別によるメタファーの検証
- Authors: Kotaro Aono, Ryohei Sasano, Koichi Takeda,
- Abstract要約: 本研究では,コモンクローリングから抽出した文にメタファー検出を適用することで,動詞のメタファーに関する既存の主張を大規模にコーパスベースで分析する。
検証結果は,メタファーとして用いた動詞の直接対象は,具体性,イメージ性,親しみやすさの度合いが低く,メタファーが感情的・主観的文で用いやすいことを示している。
- 参考スコア(独自算出の注目度): 14.143299702954023
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There are several linguistic claims about situations where words are more likely to be used as metaphors. However, few studies have sought to verify such claims with large corpora. This study entails a large-scale, corpus-based analysis of certain existing claims about verb metaphors, by applying metaphor detection to sentences extracted from Common Crawl and using the statistics obtained from the results. The verification results indicate that the direct objects of verbs used as metaphors tend to have lower degrees of concreteness, imageability, and familiarity, and that metaphors are more likely to be used in emotional and subjective sentences.
- Abstract(参考訳): 言葉が比喩として使われる傾向が強い状況について、いくつかの言語学的主張がある。
しかし、そのような主張を大きなコーパスで検証しようとする研究はほとんどない。
本研究では,コモンクローリングから抽出した文にメタファー検出を適用し,その結果から得られた統計値を用いて,動詞のメタファーに関する既存の主張を大規模にコーパスベースで分析する。
検証結果は,メタファーとして用いた動詞の直接対象は,具体性,イメージ性,親しみやすさの度合いが低く,メタファーが感情的・主観的文で用いやすいことを示している。
関連論文リスト
- Finding Challenging Metaphors that Confuse Pretrained Language Models [21.553915781660905]
現在最先端のNLPモデルにどのようなメタファーが挑戦するのかは不明だ。
難解なメタファーを識別するために、特定のモデルに挑戦するメタファーを識別する自動パイプラインを提案する。
分析の結果,検出されたハードメタファーはVUAと有意に対照的であり,機械翻訳の精度は16%低下した。
論文 参考訳(メタデータ) (2024-01-29T10:00:54Z) - That was the last straw, we need more: Are Translation Systems Sensitive
to Disambiguating Context? [64.38544995251642]
我々は、源泉に存在している意味的あいまいさ(本研究における英語)について研究する。
我々は、リテラルと図形の両方にオープンなイディオムに焦点を当てている。
現在のMTモデルは、たとえ文脈が比喩的解釈を示しているとしても、英語のイディオムを文字通りに翻訳する。
論文 参考訳(メタデータ) (2023-10-23T06:38:49Z) - LMs stand their Ground: Investigating the Effect of Embodiment in
Figurative Language Interpretation by Language Models [0.0]
表現言語は、その解釈が従来の順序や意味から逸脱しているため、言語モデルの課題である。
しかし、人間がメタファーを理解し解釈するのは、メタファーを具現化したメタファーから導き出すことができるためである。
本研究は、比喩文の動作がより具体化されている場合に、より大きな言語モデルが比喩文の解釈にいかに優れているかを示す。
論文 参考訳(メタデータ) (2023-05-05T11:44:12Z) - Neighboring Words Affect Human Interpretation of Saliency Explanations [65.29015910991261]
単語レベルのサリエンシの説明は、しばしばテキストベースのモデルで特徴属性を伝えるために使われる。
近年の研究では、単語の長さなどの表面的要因が、コミュニケーションされたサリエンシスコアの人間の解釈を歪めてしまうことが報告されている。
本研究では,単語の近傍にある単語のマーキングが,その単語の重要性に対する説明者の認識にどのように影響するかを検討する。
論文 参考訳(メタデータ) (2023-05-04T09:50:25Z) - The Secret of Metaphor on Expressing Stronger Emotion [16.381658893164538]
本研究は,メタファーがリテラルよりも強い感情を伝達する方法を探求する最初の研究である。
比喩のより具体的な性質は、感情表現において比喩が優越する理由の1つである。
さらに、リテラル言語はより具体的に表現することで、より強い感情を表現できるので、リテラル言語においても特異性は不可欠である。
論文 参考訳(メタデータ) (2023-01-30T16:36:02Z) - Are Representations Built from the Ground Up? An Empirical Examination
of Local Composition in Language Models [91.3755431537592]
構成的・非構成的句を表現することは言語理解にとって重要である。
まず,より長いフレーズのLM-内部表現を,その構成成分から予測する問題を定式化する。
意味的構成性の人間の判断と相関する予測精度を期待するが、大部分はそうではない。
論文 参考訳(メタデータ) (2022-10-07T14:21:30Z) - Testing the Ability of Language Models to Interpret Figurative Language [69.59943454934799]
比喩的・比喩的な言語は言論において一般的である。
現代の言語モデルが非リテラルなフレーズをどの程度解釈できるかについては、未解決の疑問が残る。
ウィノグラードスタイルの非文字言語理解タスクであるFig-QAを紹介する。
論文 参考訳(メタデータ) (2022-04-26T23:42:22Z) - On the Impact of Temporal Representations on Metaphor Detection [1.6959319157216468]
メタファー検出のための最先端のアプローチは、ニューラルネットワークに基づくシーケンシャルなメタファー分類器を使用して、リテラル(リテラル、またはコア)の意味と文脈的意味を比較する。
本研究では, 時間的, 静的な単語の埋め込みを, 意味の表現に用い, 詳細な探索分析によるメタファ検出課題について検討する。
その結果,異なる単語の埋め込みがメタファー検出タスクや時間的単語の埋め込みに影響を及ぼすことが示唆された。
論文 参考訳(メタデータ) (2021-11-05T08:43:21Z) - It's not Rocket Science : Interpreting Figurative Language in Narratives [48.84507467131819]
我々は2つの非構成的図形言語(イディオムとシミュラ)の解釈を研究する。
実験の結果、事前学習された言語モデルのみに基づくモデルは、これらのタスクにおいて人間よりもはるかにひどい性能を示すことがわかった。
また, 知識強化モデルを提案し, 具体的言語を解釈するための人的戦略を採用した。
論文 参考訳(メタデータ) (2021-08-31T21:46:35Z) - How Metaphors Impact Political Discourse: A Large-Scale Topic-Agnostic
Study Using Neural Metaphor Detection [29.55309950026882]
政治談話におけるメタファーの大規模データ駆動型研究について述べる。
メタファーの使用は、選挙に勝ったり負けたりといった同時的な政治イベントに依存する複雑な方法でイデオロギー的傾向と相関していることを示す。
本研究では,ジェンダーや政党の所属など様々な社会的・政治的要因をコントロールした上でも,メタファーのある投稿が聴衆全体からより多くのエンゲージメントを引き出すことを示す。
論文 参考訳(メタデータ) (2021-04-08T17:16:31Z) - Metaphoric Paraphrase Generation [58.592750281138265]
クラウドソーシングを用いてその結果を評価し,メタファー的パラフレーズを評価するための自動指標を開発する。
語彙置換ベースラインは正確なパラフレーズを生成できるが、比喩的でないことが多い。
メタファーマスキングモデルでは,メタファー文の生成に優れ,流布やパラフレーズの品質に関してはほぼ同等に機能する。
論文 参考訳(メタデータ) (2020-02-28T16:30:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。