論文の概要: Capturing Shock Waves by Relaxation Neural Networks
- arxiv url: http://arxiv.org/abs/2404.01163v1
- Date: Mon, 1 Apr 2024 15:13:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 22:05:48.906075
- Title: Capturing Shock Waves by Relaxation Neural Networks
- Title(参考訳): 緩和ニューラルネットワークによる衝撃波の捕捉
- Authors: Nan Zhou, Zheng Ma,
- Abstract要約: 緩和ニューラルネットワーク(RelaxNN)は、物理インフォームドニューラルネットワーク(PINN)のシンプルでスケーラブルな拡張である
後に、典型的なPINNフレームワークは、双曲系の解に生じる衝撃波を扱うのに苦労していることが示されている。
緩和システムに基づいて、RelaxNNフレームワークは、PINNフレームワークのトレーニングプロセスにおける損失の衝突を軽減する。
- 参考スコア(独自算出の注目度): 2.9766880302917804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we put forward a neural network framework to solve the nonlinear hyperbolic systems. This framework, named relaxation neural networks(RelaxNN), is a simple and scalable extension of physics-informed neural networks(PINN). It is shown later that a typical PINN framework struggles to handle shock waves that arise in hyperbolic systems' solutions. This ultimately results in the failure of optimization that is based on gradient descent in the training process. Relaxation systems provide a smooth asymptotic to the discontinuity solution, under the expectation that macroscopic problems can be solved from a microscopic perspective. Based on relaxation systems, the RelaxNN framework alleviates the conflict of losses in the training process of the PINN framework. In addition to the remarkable results demonstrated in numerical simulations, most of the acceleration techniques and improvement strategies aimed at the standard PINN framework can also be applied to the RelaxNN framework.
- Abstract(参考訳): 本稿では,非線形双曲系を解くニューラルネットワークフレームワークを提案する。
このフレームワークは緩和ニューラルネットワーク(RelaxNN)と呼ばれ、物理情報ニューラルネットワーク(PINN)のシンプルでスケーラブルな拡張である。
後に、典型的なPINNフレームワークは、双曲系の解に生じる衝撃波を扱うのに苦労していることが示されている。
これは最終的に、トレーニングプロセスの勾配降下に基づく最適化の失敗をもたらす。
緩和系は、顕微鏡的な観点からマクロ的な問題を解くことができるという期待のもと、不連続解に滑らかな漸近を与える。
緩和システムに基づいて、RelaxNNフレームワークは、PINNフレームワークのトレーニングプロセスにおける損失の衝突を軽減する。
数値シミュレーションで示された顕著な結果に加えて、標準のPINNフレームワークを対象とした加速度技術や改善戦略の大部分がRelaxNNフレームワークにも適用可能である。
関連論文リスト
- Residual resampling-based physics-informed neural network for neutron diffusion equations [7.105073499157097]
中性子拡散方程式は原子炉の解析において重要な役割を果たす。
従来のPINNアプローチでは、完全に接続されたネットワーク(FCN)アーキテクチャを利用することが多い。
R2-PINNは、現在の方法に固有の制限を効果的に克服し、中性子拡散方程式のより正確で堅牢な解を提供する。
論文 参考訳(メタデータ) (2024-06-23T13:49:31Z) - DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
グラフニューラルネットワークは、様々なアプリケーションにまたがる強力なパフォーマンスで認識されている。
BPには、その生物学的妥当性に挑戦する制限があり、グラフベースのタスクのためのトレーニングニューラルネットワークの効率、スケーラビリティ、並列性に影響を与える。
半教師付き学習のケーススタディを用いて,GNNに適した新しい前方学習フレームワークであるDFA-GNNを提案する。
論文 参考訳(メタデータ) (2024-06-04T07:24:51Z) - Deeper or Wider: A Perspective from Optimal Generalization Error with Sobolev Loss [2.07180164747172]
より深いニューラルネットワーク(DeNN)と、柔軟な数のレイヤと、限られた隠れたレイヤを持つより広いニューラルネットワーク(WeNN)を比較します。
より多くのパラメータがWeNNを好む傾向にあるのに対し、サンプルポイントの増加と損失関数の規則性の向上は、DeNNの採用に傾いている。
論文 参考訳(メタデータ) (2024-01-31T20:10:10Z) - NeuralFastLAS: Fast Logic-Based Learning from Raw Data [54.938128496934695]
シンボリック・ルール学習者は解釈可能な解を生成するが、入力を記号的に符号化する必要がある。
ニューロシンボリックアプローチは、ニューラルネットワークを使用して生データを潜在シンボリック概念にマッピングすることで、この問題を克服する。
我々は,ニューラルネットワークを記号学習者と共同でトレーニングする,スケーラブルで高速なエンドツーエンドアプローチであるNeuralFastLASを紹介する。
論文 参考訳(メタデータ) (2023-10-08T12:33:42Z) - PINNsFormer: A Transformer-Based Framework For Physics-Informed Neural Networks [22.39904196850583]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)の数値解を近似するための有望なディープラーニングフレームワークとして登場した。
我々は,この制限に対処するために,新しいTransformerベースのフレームワークであるPINNsFormerを紹介した。
PINNsFormerは、PINNの障害モードや高次元PDEなど、様々なシナリオにおいて優れた一般化能力と精度を実現する。
論文 参考訳(メタデータ) (2023-07-21T18:06:27Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - An Optimal Time Variable Learning Framework for Deep Neural Networks [0.0]
提案するフレームワークは、ResNet, DenseNet, Fractional-DNNなどの既存のネットワークに適用できる。
提案手法は、3D-マクスウェル方程式に悪影響を及ぼす。
論文 参考訳(メタデータ) (2022-04-18T19:29:03Z) - Physics-informed attention-based neural network for solving non-linear
partial differential equations [6.103365780339364]
物理情報ニューラルネットワーク(PINN)は、物理プロセスのモデリングにおいて大幅な改善を実現しました。
PINNは単純なアーキテクチャに基づいており、ネットワークパラメータを最適化することで複雑な物理システムの振る舞いを学習し、基礎となるPDEの残余を最小限に抑える。
ここでは、非線形PDEの複雑な振る舞いを学ぶのに、どのネットワークアーキテクチャが最適かという問題に対処する。
論文 参考訳(メタデータ) (2021-05-17T14:29:08Z) - Online Limited Memory Neural-Linear Bandits with Likelihood Matching [53.18698496031658]
本研究では,探索学習と表現学習の両方が重要な役割を果たす課題を解決するために,ニューラルネットワークの帯域について検討する。
破滅的な忘れ込みに対して耐性があり、完全にオンラインである可能性の高いマッチングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-07T14:19:07Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。