論文の概要: Physics-informed attention-based neural network for solving non-linear
partial differential equations
- arxiv url: http://arxiv.org/abs/2105.07898v1
- Date: Mon, 17 May 2021 14:29:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-18 15:04:12.135857
- Title: Physics-informed attention-based neural network for solving non-linear
partial differential equations
- Title(参考訳): 非線型偏微分方程式を解く物理インフォームドアテンションベースニューラルネットワーク
- Authors: Ruben Rodriguez-Torrado, Pablo Ruiz, Luis Cueto-Felgueroso, Michael
Cerny Green, Tyler Friesen, Sebastien Matringe and Julian Togelius
- Abstract要約: 物理情報ニューラルネットワーク(PINN)は、物理プロセスのモデリングにおいて大幅な改善を実現しました。
PINNは単純なアーキテクチャに基づいており、ネットワークパラメータを最適化することで複雑な物理システムの振る舞いを学習し、基礎となるPDEの残余を最小限に抑える。
ここでは、非線形PDEの複雑な振る舞いを学ぶのに、どのネットワークアーキテクチャが最適かという問題に対処する。
- 参考スコア(独自算出の注目度): 6.103365780339364
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Physics-Informed Neural Networks (PINNs) have enabled significant
improvements in modelling physical processes described by partial differential
equations (PDEs). PINNs are based on simple architectures, and learn the
behavior of complex physical systems by optimizing the network parameters to
minimize the residual of the underlying PDE. Current network architectures
share some of the limitations of classical numerical discretization schemes
when applied to non-linear differential equations in continuum mechanics. A
paradigmatic example is the solution of hyperbolic conservation laws that
develop highly localized nonlinear shock waves. Learning solutions of PDEs with
dominant hyperbolic character is a challenge for current PINN approaches, which
rely, like most grid-based numerical schemes, on adding artificial dissipation.
Here, we address the fundamental question of which network architectures are
best suited to learn the complex behavior of non-linear PDEs. We focus on
network architecture rather than on residual regularization. Our new
methodology, called Physics-Informed Attention-based Neural Networks, (PIANNs),
is a combination of recurrent neural networks and attention mechanisms. The
attention mechanism adapts the behavior of the deep neural network to the
non-linear features of the solution, and break the current limitations of
PINNs. We find that PIANNs effectively capture the shock front in a hyperbolic
model problem, and are capable of providing high-quality solutions inside and
beyond the training set.
- Abstract(参考訳): 物理学に変形したニューラルネットワーク(pinns)は、偏微分方程式 (pdes) によって記述される物理過程のモデリングにおいて大幅に改善した。
PINNは単純なアーキテクチャに基づいており、ネットワークパラメータを最適化することで複雑な物理システムの振る舞いを学習し、基礎となるPDEの残余を最小限に抑える。
現在のネットワークアーキテクチャは、連続力学における非線形微分方程式に適用する際の古典的な数値離散化スキームのいくつかの制限を共有している。
パラダイム的な例は、高度に局所化された非線形衝撃波を発生させる双曲保存則の解である。
支配的な双曲的特徴を持つPDEの学習ソリューションは、ほとんどのグリッドベースの数値スキームと同様に、人工散逸を追加することに依存する現在のPINNアプローチの課題である。
ここでは、非線形PDEの複雑な振る舞いを学ぶのに、ネットワークアーキテクチャが最適かという根本的な問題に対処する。
我々は残留正規化よりもネットワークアーキテクチャに注目する。
物理学を応用したアテンションベースニューラルネットワーク(pianns)と呼ばれる新しい手法は,リカレントニューラルネットワークとアテンション機構を組み合わせたものだ。
注意機構は、ディープニューラルネットワークの挙動をソリューションの非線形特徴に適応させ、PINNの現在の制限を破る。
PIANNは双曲モデル問題におけるショックフロントを効果的に捉え、トレーニングセット内外の高品質なソリューションを提供することができる。
関連論文リスト
- HyResPINNs: Adaptive Hybrid Residual Networks for Learning Optimal Combinations of Neural and RBF Components for Physics-Informed Modeling [22.689531776611084]
我々はHyResPINNと呼ばれる新しいPINNのクラスを提示する。
本手法の重要な特徴は,各残差ブロックに適応的な組み合わせパラメータを組み込むことである。
HyResPINNは従来のPINNよりも、ポイントロケーションやニューラルネットワークアーキテクチャのトレーニングに堅牢であることを示す。
論文 参考訳(メタデータ) (2024-10-04T16:21:14Z) - An efficient wavelet-based physics-informed neural networks for singularly perturbed problems [0.0]
物理インフォームドニューラルネットワーク(英: Physics-informed Neural Network、PINN)は、物理学を微分方程式として利用するディープラーニングモデルのクラスである。
単一摂動微分方程式を解くために,効率的なウェーブレットベースPINNモデルを提案する。
このアーキテクチャにより、トレーニングプロセスはウェーブレット空間内のソリューションを探索することができ、プロセスがより速く、より正確になる。
論文 参考訳(メタデータ) (2024-09-18T10:01:37Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Characteristics-Informed Neural Networks for Forward and Inverse
Hyperbolic Problems [0.0]
双曲型PDEを含む前方および逆問題に対する特徴情報ニューラルネットワーク(CINN)を提案する。
CINNは、通常のMSEデータ適合回帰損失をトレーニングした汎用ディープニューラルネットワークにおいて、PDEの特性を符号化する。
予備的な結果は、CINNがベースラインPINNの精度を改善しつつ、トレーニングの約2倍の速さで非物理的解を回避できることを示している。
論文 参考訳(メタデータ) (2022-12-28T18:38:53Z) - RBF-MGN:Solving spatiotemporal PDEs with Physics-informed Graph Neural
Network [4.425915683879297]
グラフニューラルネットワーク(GNN)とラジアル基底関数有限差分(RBF-FD)に基づく新しいフレームワークを提案する。
RBF-FDはモデルトレーニングを導くために微分方程式の高精度差分形式を構築するために用いられる。
提案アルゴリズムの一般化可能性,精度,効率性を,異なるPDEパラメータで説明する。
論文 参考訳(メタデータ) (2022-12-06T10:08:02Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving
Spatiotemporal PDEs [8.220908558735884]
偏微分方程式 (Partial differential equation, PDE) は、幅広い分野の問題をモデル化し、シミュレーションする上で基礎的な役割を果たす。
近年のディープラーニングの進歩は、データ駆動逆解析の基盤としてPDEを解くために物理学インフォームドニューラルネットワーク(NN)の大きな可能性を示している。
本稿では,PDEをラベル付きデータなしで解くための物理インフォームド・畳み込み学習アーキテクチャ(PhyCRNetとPhCRyNet-s)を提案する。
論文 参考訳(メタデータ) (2021-06-26T22:22:19Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。