Accurate and precise quantum computation of valence two-neutron systems
- URL: http://arxiv.org/abs/2404.01694v2
- Date: Tue, 14 May 2024 13:02:00 GMT
- Title: Accurate and precise quantum computation of valence two-neutron systems
- Authors: Sota Yoshida, Takeshi Sato, Takumi Ogata, Tomoya Naito, Masaaki Kimura,
- Abstract summary: We introduce a quantum algorithm to accurately and precisely compute the ground state of two-neutron systems.
Our experiments using real quantum devices also show the pivotal role of the circuit layout design, attuned to the connectivity of the qubits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Developing methods to solve nuclear many-body problems with quantum computers is an imperative pursuit within the nuclear physics community. Here, we introduce a quantum algorithm to accurately and precisely compute the ground state of valence two-neutron systems leveraging presently available Noisy Intermediate-Scale Quantum devices. Our focus lies on the nuclei having a doubly-magic core plus two valence neutrons in the $ p $, $ sd $, and $ pf $ shells, i.e. ${}^6$He, ${}^{18}$O, and ${}^{42}$Ca, respectively. Our ansatz, quantum circuit, is constructed in the pair-wise form, taking into account the symmetries of the system in an explicit manner, and enables us to reduce the number of qubits and the number of CNOT gates required. The results on a real quantum hardware by IBM Quantum Platform show that the proposed method gives very accurate results of the ground-state energies, which are typically within $ 0.1 \, \% $ error in the energy for ${}^6$He and ${}^{18}$O and at most $ 1 \, \% $ error for ${}^{42}$Ca. Furthermore, our experiments using real quantum devices also show the pivotal role of the circuit layout design, attuned to the connectivity of the qubits, in mitigating errors.
Related papers
- Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Shallow quantum circuits for efficient preparation of Slater
determinants and correlated states on a quantum computer [0.0]
Fermionic ansatz state preparation is a critical subroutine in many quantum algorithms such as Variational Quantum Eigensolver for quantum chemistry and condensed matter applications.
Inspired by data-loading circuits developed for quantum machine learning, we propose an alternate paradigm that provides shallower, yet scalable $mathcalO(d log2N)$ two-qubit gate depth circuits to prepare such states with d-fermions.
arXiv Detail & Related papers (2023-01-18T12:43:18Z) - A Quantum Repeater Platform based on Single SiV$^-$ Centers in Diamond
with Cavity-Assisted, All-Optical Spin Access and Fast Coherent Driving [45.82374977939355]
Quantum key distribution enables secure communication based on the principles of quantum mechanics.
Quantum repeaters are required to establish large-scale quantum networks.
We present an efficient spin-photon interface for quantum repeaters.
arXiv Detail & Related papers (2022-10-28T14:33:24Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Halving the cost of quantum multiplexed rotations [0.0]
We improve the number of $T$ gates needed for a $b$-bit approximation of a multiplexed quantum gate with $c$ controls.
Our results roughly halve the cost of state-of-art electronic structure simulations based on qubitization of double-factorized or tensor-hypercontracted representations.
arXiv Detail & Related papers (2021-10-26T06:49:44Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Quantum circuits for exact unitary $t$-designs and applications to
higher-order randomized benchmarking [0.45823749779393547]
We provide for the first time quantum circuits that generate exact unitary $t$-designs for any $t$ on an arbitrary number of qubits.
We numerically demonstrate that the $2$-RB in one- and two-qubit systems is feasible, and experimentally characterize background noise of a superconducting qubit.
arXiv Detail & Related papers (2021-02-25T01:17:42Z) - Conditional quantum operation of two exchange-coupled single-donor spin
qubits in a MOS-compatible silicon device [48.7576911714538]
Silicon nanoelectronic devices can host single-qubit quantum logic operations with fidelity better than 99.9%.
For the spins of an electron bound to a single donor atom, introduced in the silicon by ion implantation, the quantum information can be stored for nearly 1 second.
Here we demonstrate the conditional, coherent control of an electron spin qubit in an exchange-coupled pair of $31$P donors implanted in silicon.
arXiv Detail & Related papers (2020-06-08T11:25:16Z) - Efficient Two-Electron Ansatz for Benchmarking Quantum Chemistry on a
Quantum Computer [0.0]
We present an efficient ansatz for the computation of two-electron atoms and molecules within a hybrid quantum-classical algorithm.
The ansatz exploits the fundamental structure of the two-electron system, and treating the nonlocal and local degrees of freedom.
We implement this benchmark with error mitigation on two publicly available quantum computers.
arXiv Detail & Related papers (2020-04-21T23:37:48Z) - Computational advantage from quantum superposition of multiple temporal
orders of photonic gates [0.0]
A control quantum system can coherently determine the order in which a target quantum system undergoes $N$ gate operations.
We experimentally demonstrate the quantum $N$-switch with $N=4$ gates acting on a photonic-polarization qubit.
This is the first observation of a quantum superposition of more than $N=2$ temporal orders.
arXiv Detail & Related papers (2020-02-18T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.