論文の概要: Real, fake and synthetic faces - does the coin have three sides?
- arxiv url: http://arxiv.org/abs/2404.01878v1
- Date: Tue, 2 Apr 2024 12:08:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 16:38:36.496921
- Title: Real, fake and synthetic faces - does the coin have three sides?
- Title(参考訳): 本物の、偽の、合成的な顔 - コインには3つの側面がありますか?
- Authors: Shahzeb Naeem, Ramzi Al-Sharawi, Muhammad Riyyan Khan, Usman Tariq, Abhinav Dhall, Hasan Al-Nashash,
- Abstract要約: 本稿では, 実像, ディープフェイク像, 合成顔画像の傾向とパターンを新たに検討する。
我々は8つのディープラーニングモデルを導入し、それらのパフォーマンスを分析して、3つの画像のクラスを区別する。
この分析は、顔画像生成のためのより良いアルゴリズムを構築するのに役立つだけでなく、合成、ディープフェイク、および実際の顔画像が実際には3つの異なるクラスであることを示す。
- 参考スコア(独自算出の注目度): 6.189190729240752
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the ever-growing power of generative artificial intelligence, deepfake and artificially generated (synthetic) media have continued to spread online, which creates various ethical and moral concerns regarding their usage. To tackle this, we thus present a novel exploration of the trends and patterns observed in real, deepfake and synthetic facial images. The proposed analysis is done in two parts: firstly, we incorporate eight deep learning models and analyze their performances in distinguishing between the three classes of images. Next, we look to further delve into the similarities and differences between these three sets of images by investigating their image properties both in the context of the entire image as well as in the context of specific regions within the image. ANOVA test was also performed and provided further clarity amongst the patterns associated between the images of the three classes. From our findings, we observe that the investigated deeplearning models found it easier to detect synthetic facial images, with the ViT Patch-16 model performing best on this task with a class-averaged sensitivity, specificity, precision, and accuracy of 97.37%, 98.69%, 97.48%, and 98.25%, respectively. This observation was supported by further analysis of various image properties. We saw noticeable differences across the three category of images. This analysis can help us build better algorithms for facial image generation, and also shows that synthetic, deepfake and real face images are indeed three different classes.
- Abstract(参考訳): 進化を続ける人工知能の力により、ディープフェイクと人工的な(合成された)メディアはオンラインに広がり続けており、それらの使用に関して様々な倫理的・道徳的な懸念を生み出している。
そこで本研究では, 現実, ディープフェイク, 合成顔画像の傾向とパターンを新たに探索する。
提案した分析は,まず,8つのディープラーニングモデルを組み込んで,その性能を3種類の画像と区別して分析する。
次に,これら3つの画像の類似点と相違点について,画像全体のコンテキストと画像内の特定の領域のコンテキストの両方において,それらの画像特性を調査することによって検討する。
また,ANOVA試験も実施し,これら3種類の画像間のパターンについてさらに明瞭性を示した。
以上の結果から,VT Patch-16モデルでは,平均感度,特異度,精度,精度が97.37%,98.69%,97.48%,98.25%であった。
この観察は、様々な画像特性のさらなる解析によって裏付けられた。
画像の3つのカテゴリで顕著な違いが見られた。
この分析は、顔画像生成のためのより良いアルゴリズムを構築するのに役立つだけでなく、合成、ディープフェイク、および実際の顔画像が実際には3つの異なるクラスであることを示す。
関連論文リスト
- Analysis of Human Perception in Distinguishing Real and AI-Generated Faces: An Eye-Tracking Based Study [6.661332913985627]
本研究では,人間がどのように実像と偽像を知覚し,区別するかを検討する。
StyleGAN-3生成画像を解析したところ、参加者は76.80%の平均精度で偽の顔と現実を区別できることがわかった。
論文 参考訳(メタデータ) (2024-09-23T19:34:30Z) - Development of a Dual-Input Neural Model for Detecting AI-Generated Imagery [0.0]
AI生成画像を検出するツールを開発することが重要である。
本稿では、画像とフーリエ周波数分解の両方を入力として扱うデュアルブランチニューラルネットワークアーキテクチャを提案する。
提案モデルでは,CIFAKEデータセットの精度が94%向上し,従来のML手法やCNNよりも優れていた。
論文 参考訳(メタデータ) (2024-06-19T16:42:04Z) - Unveiling the Truth: Exploring Human Gaze Patterns in Fake Images [34.02058539403381]
我々は、人間の意味的知識を活用して、偽画像検出のフレームワークに含まれる可能性を調べる。
予備的な統計的分析により、人間が本物の画像や変化した画像をどのように知覚するかの特徴的なパターンを探索する。
論文 参考訳(メタデータ) (2024-03-13T19:56:30Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
近年の拡散モデルの発展により、自然言語のテキストプロンプトから現実的なディープフェイクの生成が可能になった。
我々は、最先端拡散モデルにより生成されたディープフェイク検出に関する体系的研究を開拓した。
論文 参考訳(メタデータ) (2023-04-02T10:25:09Z) - CIFAKE: Image Classification and Explainable Identification of
AI-Generated Synthetic Images [7.868449549351487]
本稿では,コンピュータビジョンによるAI生成画像の認識能力を高めることを提案する。
写真が本物かAIによって生成されるかに関して、バイナリ分類問題として存在する2つのデータセット。
本研究では,畳み込みニューラルネットワーク(CNN)を用いて画像をリアルとフェイクの2つのカテゴリに分類する。
論文 参考訳(メタデータ) (2023-03-24T16:33:06Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
我々は、ID混在(IM)とドメイン混在(DM)を併用したSynFaceを考案し、パフォーマンスギャップを緩和する。
また、合成顔画像の系統的実験分析を行い、合成データを顔認識に効果的に活用する方法についての知見を提供する。
論文 参考訳(メタデータ) (2021-08-18T03:41:54Z) - IMAGINE: Image Synthesis by Image-Guided Model Inversion [79.4691654458141]
IMGE-Guided Model INvErsion (IMAGINE) と呼ばれるインバージョンベースの手法を導入し、高品質で多様な画像を生成します。
我々は,事前学習した分類器から画像意味論の知識を活用し,妥当な世代を実現する。
IMAGINEは,1)合成中の意味的特異性制約を同時に実施し,2)ジェネレータトレーニングなしでリアルな画像を生成し,3)生成過程を直感的に制御する。
論文 参考訳(メタデータ) (2021-04-13T02:00:24Z) - Explainable Face Recognition [4.358626952482686]
本稿では,説明可能な顔認識のための総合的なベンチマークとベースライン評価を行う。
95人の被験者からなる3648個の三つ子(プローブ,配偶子,非配偶子)のキュレートしたセットである「インペイントゲーム」と呼ばれる新しい評価プロトコルを定義した。
探索画像内のどの領域が交配画像と一致しているかを最もよく説明するネットワークアテンションマップを生成するための説明可能なフェイスマーカを課題とする。
論文 参考訳(メタデータ) (2020-08-03T14:47:51Z) - Unsupervised Landmark Learning from Unpaired Data [117.81440795184587]
教師なしランドマーク学習の最近の試みは、外観は似ているがポーズでは異なる合成画像対を活用する。
本稿では,2回スワッピング・リコンストラクション・ストラテジーを適用して最終監視を行うクロスイメージ・サイクル整合性フレームワークを提案する。
提案するフレームワークは,強いベースラインを大きなマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-06-29T13:57:20Z) - Intrinsic Autoencoders for Joint Neural Rendering and Intrinsic Image
Decomposition [67.9464567157846]
合成3Dモデルからリアルな画像を生成するためのオートエンコーダを提案し,同時に実像を本質的な形状と外観特性に分解する。
実験により, レンダリングと分解の併用処理が有益であることが確認され, 画像から画像への翻訳の質的, 定量的なベースラインよりも優れた結果が得られた。
論文 参考訳(メタデータ) (2020-06-29T12:53:58Z) - Learning Inverse Rendering of Faces from Real-world Videos [52.313931830408386]
既存の方法は、顔画像を3つの構成要素(アルベド、ノーマル、照明)に分解する。
本稿では,アルベドと正常の整合性の仮定に基づいて,我々のモデルを実顔ビデオでトレーニングするための弱い教師付きトレーニング手法を提案する。
私たちのネットワークは、実データと合成データの両方で訓練されています。
論文 参考訳(メタデータ) (2020-03-26T17:26:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。