論文の概要: Analysis of Human Perception in Distinguishing Real and AI-Generated Faces: An Eye-Tracking Based Study
- arxiv url: http://arxiv.org/abs/2409.15498v1
- Date: Mon, 23 Sep 2024 19:34:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 12:57:29.191012
- Title: Analysis of Human Perception in Distinguishing Real and AI-Generated Faces: An Eye-Tracking Based Study
- Title(参考訳): 実顔とAI生成顔の識別における人間の知覚の分析 : 視線追跡による研究
- Authors: Jin Huang, Subhadra Gopalakrishnan, Trisha Mittal, Jake Zuena, Jaclyn Pytlarz,
- Abstract要約: 本研究では,人間がどのように実像と偽像を知覚し,区別するかを検討する。
StyleGAN-3生成画像を解析したところ、参加者は76.80%の平均精度で偽の顔と現実を区別できることがわかった。
- 参考スコア(独自算出の注目度): 6.661332913985627
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in Artificial Intelligence have led to remarkable improvements in generating realistic human faces. While these advancements demonstrate significant progress in generative models, they also raise concerns about the potential misuse of these generated images. In this study, we investigate how humans perceive and distinguish between real and fake images. We designed a perceptual experiment using eye-tracking technology to analyze how individuals differentiate real faces from those generated by AI. Our analysis of StyleGAN-3 generated images reveals that participants can distinguish real from fake faces with an average accuracy of 76.80%. Additionally, we found that participants scrutinize images more closely when they suspect an image to be fake. We believe this study offers valuable insights into human perception of AI-generated media.
- Abstract(参考訳): 人工知能の最近の進歩は、現実的な人間の顔の生成において顕著な改善をもたらした。
これらの進歩は生成モデルに大きな進歩を示したが、生成した画像の潜在的な誤用に対する懸念も持ち上がった。
本研究では,人間がどのように実像と偽像を知覚し,区別するかを検討する。
我々は、視線追跡技術を用いた知覚実験を設計し、個人が実際の顔をAIによって生成されたものと区別する方法を分析した。
StyleGAN-3生成画像を解析したところ、参加者は76.80%の平均精度で偽の顔と現実を区別できることがわかった。
さらに,画像が偽物と疑われる場合には,被験者がより精査しやすくなった。
この研究は、AI生成メディアに対する人間の認識に関する貴重な洞察を提供すると考えている。
関連論文リスト
- Unveiling the Truth: Exploring Human Gaze Patterns in Fake Images [34.02058539403381]
我々は、人間の意味的知識を活用して、偽画像検出のフレームワークに含まれる可能性を調べる。
予備的な統計的分析により、人間が本物の画像や変化した画像をどのように知覚するかの特徴的なパターンを探索する。
論文 参考訳(メタデータ) (2024-03-13T19:56:30Z) - Exploring the Naturalness of AI-Generated Images [59.04528584651131]
我々は、AI生成画像の視覚的自然性をベンチマークし、評価する第一歩を踏み出した。
本研究では,人間の評価を整列するAGIの自然性を自動予測するジョイント・オブジェクト・イメージ・ナチュラルネス評価器(JOINT)を提案する。
その結果,JOINTは自然性評価において,より主観的に一貫した結果を提供するために,ベースラインを著しく上回ることを示した。
論文 参考訳(メタデータ) (2023-12-09T06:08:09Z) - Seeing is not always believing: Benchmarking Human and Model Perception
of AI-Generated Images [66.20578637253831]
人工知能(AI)技術の進歩が偽写真を生み出すのではないかという懸念が高まっている。
本研究の目的は、最先端のAI生成視覚コンテンツを識別するためのエージェントを包括的に評価することである。
論文 参考訳(メタデータ) (2023-04-25T17:51:59Z) - The Value of AI Guidance in Human Examination of Synthetically-Generated
Faces [4.144518961834414]
我々は,ヒト誘導型顔検出装置が,合成画像検出のタスクにおいて,熟練者以外の操作者を支援することができるかどうかを検討する。
我々は1,560名以上の被験者を対象に大規模な実験を行った。
人間の誘導で訓練されたモデルは、伝統的にクロスエントロピー損失を用いて訓練されたモデルと比較して、人間の顔画像の検査により良いサポートを提供する。
論文 参考訳(メタデータ) (2022-08-22T18:45:53Z) - Open-Eye: An Open Platform to Study Human Performance on Identifying
AI-Synthesized Faces [51.56417104929796]
我々は、AI合成顔検出の人的パフォーマンスを研究するために、Open-eyeと呼ばれるオンラインプラットフォームを開発した。
本稿では,オープンアイの設計とワークフローについて述べる。
論文 参考訳(メタデータ) (2022-05-13T14:30:59Z) - Evaluation of Human and Machine Face Detection using a Novel Distinctive
Human Appearance Dataset [0.76146285961466]
画像中の顔を検出する能力において,現在最先端の顔検出モデルを評価する。
評価結果から,顔検出アルゴリズムは多様な外観に適さないことが示された。
論文 参考訳(メタデータ) (2021-11-01T02:20:40Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
我々は、ID混在(IM)とドメイン混在(DM)を併用したSynFaceを考案し、パフォーマンスギャップを緩和する。
また、合成顔画像の系統的実験分析を行い、合成データを顔認識に効果的に活用する方法についての知見を提供する。
論文 参考訳(メタデータ) (2021-08-18T03:41:54Z) - More Real than Real: A Study on Human Visual Perception of Synthetic
Faces [7.25613186882905]
本稿では,最先端のジェネレーティブ・ディバイザリー・ネットワークが生み出した合成顔画像にボランティアが露出する知覚実験について述べる。
実験結果から、現代のAIによって生成された合成顔と実際の顔を区別する人間の能力に疑問を投げかけるべきかどうかが明らかになる。
論文 参考訳(メタデータ) (2021-06-14T08:27:25Z) - Deepfake Forensics via An Adversarial Game [99.84099103679816]
顔偽造と画像・映像品質の両面での一般化能力向上のための対人訓練を提唱する。
AIベースの顔操作は、しばしば、一般化が困難であるモデルによって容易に発見できる高周波アーティファクトにつながることを考慮し、これらの特定のアーティファクトを曖昧にしようとする新しい逆トレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-03-25T02:20:08Z) - Facial Expressions as a Vulnerability in Face Recognition [73.85525896663371]
本研究では,顔認識システムのセキュリティ脆弱性としての表情バイアスについて検討する。
本稿では,表情バイアスが顔認識技術の性能に与える影響を包括的に分析する。
論文 参考訳(メタデータ) (2020-11-17T18:12:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。