論文の概要: Leveraging Machine Learning for Early Autism Detection via INDT-ASD Indian Database
- arxiv url: http://arxiv.org/abs/2404.02181v1
- Date: Tue, 2 Apr 2024 12:44:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 21:38:27.810649
- Title: Leveraging Machine Learning for Early Autism Detection via INDT-ASD Indian Database
- Title(参考訳): INDT-ASD Indian Databaseによる早期自閉症検出のための機械学習の活用
- Authors: Trapti Shrivastava, Harshal Chaudhari, Vrijendra Singh,
- Abstract要約: 自閉症スペクトラム障害(Autism spectrum disorder、ASD)は、世界最速の発達障害の一つである。
本研究は,機械学習を用いてASDを識別するための簡易かつ迅速かつ安価な技術を開発することを目的とした。
Adaboost (AB), Gradient Boost (GB), Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), Gaussian Naive Bayes (GNB), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), K-Nearest Neighbors (KNN), Support Vector Machine (SVM)など,さまざまな機械学習分類器がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning (ML) has advanced quickly, particularly throughout the area of health care. The diagnosis of neurodevelopment problems using ML is a very important area of healthcare. Autism spectrum disorder (ASD) is one of the developmental disorders that is growing the fastest globally. The clinical screening tests used to identify autistic symptoms are expensive and time-consuming. But now that ML has been advanced, it's feasible to identify autism early on. Previously, many different techniques have been used in investigations. Still, none of them have produced the anticipated outcomes when it comes to the capacity to predict autistic features utilizing a clinically validated Indian ASD database. Therefore, this study aimed to develop a simple, quick, and inexpensive technique for identifying ASD by using ML. Various machine learning classifiers, including Adaboost (AB), Gradient Boost (GB), Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), Gaussian Naive Bayes (GNB), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM), were used to develop the autism prediction model. The proposed method was tested with records from the AIIMS Modified INDT-ASD (AMI) database, which were collected through an application developed by AIIMS in Delhi, India. Feature engineering has been applied to make the proposed solution easier than already available solutions. Using the proposed model, we succeeded in predicting ASD using a minimized set of 20 questions rather than the 28 questions presented in AMI with promising accuracy. In a comparative evaluation, SVM emerged as the superior model among others, with 100 $\pm$ 0.05\% accuracy, higher recall by 5.34\%, and improved accuracy by 2.22\%-6.67\% over RF. We have also introduced a web-based solution supporting both Hindi and English.
- Abstract(参考訳): 機械学習(ML)は、特に医療の分野で急速に進歩している。
MLを用いた神経発達障害の診断は非常に重要な医療分野である。
自閉症スペクトラム障害(Autism spectrum disorder、ASD)は、世界最速の発達障害の一つである。
自閉症の症状を特定するための臨床検査は高価で時間を要する。
しかしMLが進歩した今、自閉症を早期に特定することは可能である。
以前は様々な技術が研究に使われてきた。
それでも、臨床で検証されたインドのASDデータベースを用いて自閉症の特徴を予測する能力に関して、予想される結果が得られていない。
そこで本研究では,MLを用いて簡易かつ迅速かつ安価にASDを識別する手法を開発することを目的とした。
Adaboost (AB), Gradient Boost (GB), Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), Gaussian Naive Bayes (GNB), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), K-Nearest Neighbors (KNN), Support Vector Machine (SVM)などの機械学習分類器を用いて自閉症予測モデルを開発した。
提案手法はインドのデリーでAIIMS Modified INDT-ASD (AMI) データベースを用いて実験を行った。
提案されたソリューションを、既に利用可能なソリューションよりも容易にするために、機能エンジニアリングが適用されている。
提案モデルを用いて,AMIで提示された28の質問よりも,20の質問の最小セットを用いてASDの予測に成功した。
比較評価では、SVMが上位モデルとして登場し、100$\pm$ 0.05\%、リコール率 5.34\%、RFよりも2.22\%-6.67\%向上した。
ヒンディー語と英語の両方をサポートするWebベースのソリューションも導入しました。
関連論文リスト
- Explainable AI for Autism Diagnosis: Identifying Critical Brain Regions Using fMRI Data [0.29687381456163997]
自閉症スペクトラム障害(ASD)の早期診断と介入は、自閉症者の生活の質を著しく向上させることが示されている。
ASDの客観的バイオマーカーは診断精度の向上に役立つ。
深層学習(DL)は,医療画像データから疾患や病態を診断する上で,優れた成果を上げている。
本研究の目的は, ASD の精度と解釈性を向上させることであり, ASD を正確に分類できるだけでなく,その動作に関する説明可能な洞察を提供する DL モデルを作成することである。
論文 参考訳(メタデータ) (2024-09-19T23:08:09Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Enhancing ASD detection accuracy: a combined approach of machine
learning and deep learning models with natural language processing [0.0]
自閉症スペクトラム障害(ASD)の診断における人工知能(AI)の利用について検討した。
ソーシャルメディア上のテキスト入力からASDを検出する機械学習(ML)とディープラーニング(DL)に焦点を当てた。
我々のAIモデルは精度が高く、88%の成功率でASDの個人からテキストを識別できた。
論文 参考訳(メタデータ) (2024-03-06T09:57:42Z) - DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
より単純な教師付き学習信号と自己教師付き学習信号で訓練した生成的アプローチが,現在のベンチマークにおいて優れた結果が得られることを示す。
The proposed Transformer-based generative network, named DDxT, autoregressive produce a set of possible pathology,, i. DDx, and predicts the real pathology using a neural network。
論文 参考訳(メタデータ) (2023-12-02T22:57:25Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - Exploiting prompt learning with pre-trained language models for
Alzheimer's Disease detection [70.86672569101536]
アルツハイマー病(AD)の早期診断は予防ケアの促進とさらなる進行の遅らせに不可欠である。
本稿では,AD分類誤差をトレーニング対象関数として一貫して用いたPLMの高速微調整法について検討する。
論文 参考訳(メタデータ) (2022-10-29T09:18:41Z) - Development of an autism screening classification model for toddlers [0.0]
自閉症スペクトラム障害 ASDは、コミュニケーション、社会的相互作用、反復行動の課題に関連する神経発達障害である。
本研究は, 乳幼児の早期検診に寄与し, ASD 特性を有する者を同定し, 正式な臨床診断を行おうとする。
論文 参考訳(メタデータ) (2021-09-29T09:07:39Z) - Automatic Assessment of Alzheimer's Disease Diagnosis Based on Deep
Learning Techniques [111.165389441988]
本研究では, MRI(sagittal magnetic resonance images)における疾患の存在を自動的に検出するシステムを開発する。
矢状面MRIは一般的には使われていないが、この研究は、少なくとも、ADを早期に同定する他の平面からのMRIと同じくらい効果があることを証明した。
本研究は,これらの分野でDLモデルを構築できることを実証する一方,TLは少ない例でタスクを完了するための必須のツールである。
論文 参考訳(メタデータ) (2021-05-18T11:37:57Z) - Developing a New Autism Diagnosis Process Based on a Hybrid Deep
Learning Architecture Through Analyzing Home Videos [1.2691047660244335]
現在、54人中1人が自閉症スペクトラム障害(ASD)と診断されており、2000年より178%高い。
本稿では,分類データと画像データの両方を用いて,従来のASD事前スクリーニングを自動化するハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-04-02T17:30:35Z) - Detecting Autism Spectrum Disorder using Machine Learning [3.2861753207533937]
逐次最小最適化(SMO)ベースのサポートベクトルマシン(SVM)分類器は、他のすべてのベンチマーク機械学習アルゴリズムより優れている。
Relief Attributesアルゴリズムは、ASDデータセットで最も重要な属性を特定するのに最適である。
論文 参考訳(メタデータ) (2020-09-30T08:33:12Z) - Early Autism Spectrum Disorders Diagnosis Using Eye-Tracking Technology [62.997667081978825]
資金不足、資格のある専門家の欠如、そして修正方法に対する信頼度の低いことが、AMDのリアルタイム診断に影響を及ぼす主要な問題である。
我々のチームは、子どもの視線活動の情報に基づいて、ALDの確率を予測するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-08-21T20:22:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。