FraGNNet: A Deep Probabilistic Model for Mass Spectrum Prediction
- URL: http://arxiv.org/abs/2404.02360v1
- Date: Tue, 2 Apr 2024 23:16:15 GMT
- Title: FraGNNet: A Deep Probabilistic Model for Mass Spectrum Prediction
- Authors: Adamo Young, Fei Wang, David Wishart, Bo Wang, Hannes Röst, Russ Greiner,
- Abstract summary: Compound to mass spectrum (C2MS) models can improve retrieval rates by augmenting real libraries with predicted spectra.
We develop a new probabilistic method for C2MS prediction, FraGNNet, that can efficiently and accurately predict high-resolution spectra.
Our model achieves state-of-the-art performance in terms of prediction error, and surpasses existing C2MS models as a tool for retrieval-based MS2C.
- Score: 5.941101105232284
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The process of identifying a compound from its mass spectrum is a critical step in the analysis of complex mixtures. Typical solutions for the mass spectrum to compound (MS2C) problem involve matching the unknown spectrum against a library of known spectrum-molecule pairs, an approach that is limited by incomplete library coverage. Compound to mass spectrum (C2MS) models can improve retrieval rates by augmenting real libraries with predicted spectra. Unfortunately, many existing C2MS models suffer from problems with prediction resolution, scalability, or interpretability. We develop a new probabilistic method for C2MS prediction, FraGNNet, that can efficiently and accurately predict high-resolution spectra. FraGNNet uses a structured latent space to provide insight into the underlying processes that define the spectrum. Our model achieves state-of-the-art performance in terms of prediction error, and surpasses existing C2MS models as a tool for retrieval-based MS2C.
Related papers
- Adaptive Fuzzy C-Means with Graph Embedding [84.47075244116782]
Fuzzy clustering algorithms can be roughly categorized into two main groups: Fuzzy C-Means (FCM) based methods and mixture model based methods.
We propose a novel FCM based clustering model that is capable of automatically learning an appropriate membership degree hyper- parameter value.
arXiv Detail & Related papers (2024-05-22T08:15:50Z) - Datacube segmentation via Deep Spectral Clustering [76.48544221010424]
Extended Vision techniques often pose a challenge in their interpretation.
The huge dimensionality of data cube spectra poses a complex task in its statistical interpretation.
In this paper, we explore the possibility of applying unsupervised clustering methods in encoded space.
A statistical dimensional reduction is performed by an ad hoc trained (Variational) AutoEncoder, while the clustering process is performed by a (learnable) iterative K-Means clustering algorithm.
arXiv Detail & Related papers (2024-01-31T09:31:28Z) - Mass Spectra Prediction with Structural Motif-based Graph Neural
Networks [21.71309513265843]
MoMS-Net is a system that predicts mass spectra using the information derived from structural motifs and the implementation of Graph Neural Networks (GNNs)
We have tested our model across diverse mass spectra and have observed its superiority over other existing models.
arXiv Detail & Related papers (2023-06-28T10:33:57Z) - Efficiently predicting high resolution mass spectra with graph neural
networks [28.387227518307604]
Identifying a small molecule from its mass spectrum is the primary open problem in computational metabolomics.
This is typically cast as information retrieval: an unknown spectrum is matched against spectra predicted computationally from a large database of chemical structures.
We resolve this tradeoff by casting spectrum prediction as a mapping from an input molecular graph to a probability distribution over molecular formulas.
arXiv Detail & Related papers (2023-01-26T21:10:26Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Tracking perovskite crystallization via deep learning-based feature
detection on 2D X-ray scattering data [137.47124933818066]
We propose an automated pipeline for the analysis of X-ray diffraction images based on the Faster R-CNN deep learning architecture.
We demonstrate our method on real-time tracking of organic-inorganic perovskite structure crystallization and test it on two applications.
arXiv Detail & Related papers (2022-02-22T15:39:00Z) - Dual-Frequency Quantum Phase Estimation Mitigates the Spectral Leakage
of Quantum Algorithms [76.15799379604898]
Quantum phase estimation suffers from spectral leakage when the reciprocal of the record length is not an integer multiple of the unknown phase.
We propose a dual-frequency estimator, which approaches the Cramer-Rao bound, when multiple samples are available.
arXiv Detail & Related papers (2022-01-23T17:20:34Z) - Unsupervised Spectral Unmixing For Telluric Correction Using A Neural
Network Autoencoder [58.720142291102135]
We present a neural network autoencoder approach for extracting a telluric transmission spectrum from a large set of high-precision observed solar spectra from the HARPS-N radial velocity spectrograph.
arXiv Detail & Related papers (2021-11-17T12:54:48Z) - MassFormer: Tandem Mass Spectrum Prediction for Small Molecules using
Graph Transformers [3.2951121243459522]
Tandem mass spectra capture fragmentation patterns that provide key structural information about a molecule.
For over seventy years, spectrum prediction has remained a key challenge in the field.
We propose a new model, MassFormer, for accurately predicting tandem mass spectra.
arXiv Detail & Related papers (2021-11-08T20:55:15Z) - Neural density estimation and uncertainty quantification for laser
induced breakdown spectroscopy spectra [4.698576003197588]
We use normalizing flows on structured spectral latent spaces to estimate probability densities.
We evaluate a method for uncertainty quantification when predicting unobserved state vectors.
We demonstrate the capability of this approach on laser-induced breakdown spectroscopy data collected by the Mars rover Curiosity.
arXiv Detail & Related papers (2021-08-17T01:10:29Z) - Spectral Unmixing With Multinomial Mixture Kernel and Wasserstein
Generative Adversarial Loss [4.56877715768796]
This study proposes a novel framework for spectral unmixing by using 1D convolution kernels and spectral uncertainty.
High-level representations are computed from data, and they are further modeled with the Multinomial Mixture Model.
Experiments are performed on both real and synthetic datasets.
arXiv Detail & Related papers (2020-12-12T16:49:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.