論文の概要: Responsible Reporting for Frontier AI Development
- arxiv url: http://arxiv.org/abs/2404.02675v1
- Date: Wed, 3 Apr 2024 12:18:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 17:31:03.081589
- Title: Responsible Reporting for Frontier AI Development
- Title(参考訳): 最前線AI開発のための責任レポート
- Authors: Noam Kolt, Markus Anderljung, Joslyn Barnhart, Asher Brass, Kevin Esvelt, Gillian K. Hadfield, Lennart Heim, Mikel Rodriguez, Jonas B. Sandbrink, Thomas Woodside,
- Abstract要約: フロンティアAIシステムからのリスクを緩和するには、それらのシステムに関する最新かつ信頼性の高い情報が必要である。
フロンティアシステムの開発と展開を行う組織は、そのような情報にかなりのアクセス権を持つ。
政府、産業、市民社会のアクターに安全クリティカルな情報を報告することで、これらの組織はフロンティア・システムによって引き起こされる新しい新興のリスクに対する可視性を向上させることができる。
- 参考スコア(独自算出の注目度): 2.6591642690968067
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mitigating the risks from frontier AI systems requires up-to-date and reliable information about those systems. Organizations that develop and deploy frontier systems have significant access to such information. By reporting safety-critical information to actors in government, industry, and civil society, these organizations could improve visibility into new and emerging risks posed by frontier systems. Equipped with this information, developers could make better informed decisions on risk management, while policymakers could design more targeted and robust regulatory infrastructure. We outline the key features of responsible reporting and propose mechanisms for implementing them in practice.
- Abstract(参考訳): フロンティアAIシステムからのリスクを緩和するには、それらのシステムに関する最新かつ信頼性の高い情報が必要である。
フロンティアシステムの開発と展開を行う組織は、そのような情報にかなりのアクセス権を持つ。
政府、産業、市民社会のアクターに安全クリティカルな情報を報告することで、これらの組織はフロンティア・システムによって引き起こされる新しい新興のリスクに対する可視性を向上させることができる。
この情報を具備すれば、開発者はリスク管理に関してより詳しい判断を下すことができ、政策立案者はよりターゲットを絞って堅牢な規制インフラを設計できる。
責任を負う報告の重要な特徴を概説し、実際に実施するためのメカニズムを提案する。
関連論文リスト
- Multi-Agent Risks from Advanced AI [90.74347101431474]
先進的なAIのマルチエージェントシステムは、新規で未発見のリスクを生じさせる。
エージェントのインセンティブに基づく3つの重要な障害モードと7つの重要なリスク要因を同定する。
各リスクのいくつかの重要な事例と、それらを緩和するための有望な方向性を強調します。
論文 参考訳(メタデータ) (2025-02-19T23:03:21Z) - Open Problems in Machine Unlearning for AI Safety [61.43515658834902]
特定の種類の知識を選択的に忘れたり、抑圧したりするマシンアンラーニングは、プライバシとデータ削除タスクの約束を示している。
本稿では,アンラーニングがAI安全性の包括的ソリューションとして機能することを防止するための重要な制約を特定する。
論文 参考訳(メタデータ) (2025-01-09T03:59:10Z) - Towards Responsible Governing AI Proliferation [0.0]
論文では、小規模で分散化されたオープンソースのAIモデルの台頭を期待するProliferation'パラダイムを紹介している。
これらの発展は、可能性があり、利益と新たなリスクの両方をもたらす可能性が高いことを示唆している。
論文 参考訳(メタデータ) (2024-12-18T13:10:35Z) - Position Paper: Model Access should be a Key Concern in AI Governance [0.0]
下流でのAIシステムのユースケース、メリット、リスクは、システムに与えられたアクセスと、誰へのアクセスに大きく依存します。
私たちは、組織や政府が責任あるエビデンスベースのアクセス決定を行うのを支援することに焦点を当てた、新たな分野であるモデルアクセスガバナンスに注目します。
私たちは、AI評価組織、フロンティアAI企業、政府、国際機関が経験的に主導されたアクセスガバナンスに関するコンセンサスを構築するのを支援するために、4つのレコメンデーションを作成しています。
論文 参考訳(メタデータ) (2024-12-01T14:59:07Z) - Security Threats in Agentic AI System [0.0]
AIシステムの複雑さと、大量のデータを処理して分析する能力が組み合わさって、データ漏洩や漏洩の可能性が高まる。
AIエージェントがより自律的に進化するにつれて、セキュリティ対策を回避または活用する能力が懸念される。
論文 参考訳(メタデータ) (2024-10-16T06:40:02Z) - A Framework for Exploring the Consequences of AI-Mediated Enterprise Knowledge Access and Identifying Risks to Workers [3.4568218861862556]
本稿では、AIを利用した企業知識アクセスシステムから労働者のリスクを特定するためのConsequence-Mechanism-Riskフレームワークを提案する。
我々は、労働者に対するリスクを詳述した幅広い文献を執筆し、労働者の価値、力、幸福に対するリスクを分類した。
今後の作業は、この枠組みを他の技術システムに適用し、労働者や他のグループの保護を促進する可能性がある。
論文 参考訳(メタデータ) (2023-12-08T17:05:40Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
AIの開発と規制は、重要な段階に達したようだ。
一部の専門家は、GPT-4よりも強力なAIシステムのトレーニングに関するモラトリアムを求めている。
本稿では、最も先進的な法的提案である欧州連合のAI法について分析する。
論文 参考訳(メタデータ) (2023-11-03T12:51:37Z) - ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence Gathering and Management [65.0114141380651]
ThreatKGはOSCTIの収集と管理のための自動化システムである。
複数のソースから多数のOSCTIレポートを効率的に収集する。
さまざまな脅威エンティティに関する高品質な知識を抽出するために、AIベースの専門技術を使用する。
論文 参考訳(メタデータ) (2022-12-20T16:13:59Z) - Trustworthy AI Inference Systems: An Industry Research View [58.000323504158054]
我々は、信頼できるAI推論システムの設計、展開、運用にアプローチするための業界調査ビューを提供する。
信頼された実行環境を用いたAIシステムの機会と課題を強調します。
我々は,産業,アカデミック,政府研究者のグローバルな集団的注意を必要とする,さらなる発展の分野を概説する。
論文 参考訳(メタデータ) (2020-08-10T23:05:55Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI開発者は、責任を負うことのできる検証可能な主張をする必要がある。
このレポートは、さまざまな利害関係者がAIシステムに関するクレームの妥当性を改善するための様々なステップを示唆している。
我々は、この目的のための10のメカニズム、すなわち、組織、ソフトウェア、ハードウェアを分析し、それらのメカニズムの実装、探索、改善を目的とした推奨を行う。
論文 参考訳(メタデータ) (2020-04-15T17:15:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。