論文の概要: GreedLlama: Performance of Financial Value-Aligned Large Language Models in Moral Reasoning
- arxiv url: http://arxiv.org/abs/2404.02934v1
- Date: Wed, 3 Apr 2024 02:16:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 19:04:16.708419
- Title: GreedLlama: Performance of Financial Value-Aligned Large Language Models in Moral Reasoning
- Title(参考訳): GreedLlama: モラル推論における金融価値を考慮した大規模言語モデルのパフォーマンス
- Authors: Jeffy Yu, Maximilian Huber, Kevin Tang,
- Abstract要約: 本稿では,大規模言語モデルと金融最適化の整合性に関する倫理的意味を考察する。
モラル推論タスクにおけるGreedLlamaのパフォーマンスをベースとなるLlama2モデルと比較することにより、この結果が関連する傾向を浮き彫りにする。
- 参考スコア(独自算出の注目度): 1.3723120574076129
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates the ethical implications of aligning Large Language Models (LLMs) with financial optimization, through the case study of GreedLlama, a model fine-tuned to prioritize economically beneficial outcomes. By comparing GreedLlama's performance in moral reasoning tasks to a base Llama2 model, our results highlight a concerning trend: GreedLlama demonstrates a marked preference for profit over ethical considerations, making morally appropriate decisions at significantly lower rates than the base model in scenarios of both low and high moral ambiguity. In low ambiguity situations, GreedLlama's ethical decisions decreased to 54.4%, compared to the base model's 86.9%, while in high ambiguity contexts, the rate was 47.4% against the base model's 65.1%. These findings emphasize the risks of single-dimensional value alignment in LLMs, underscoring the need for integrating broader ethical values into AI development to ensure decisions are not solely driven by financial incentives. The study calls for a balanced approach to LLM deployment, advocating for the incorporation of ethical considerations in models intended for business applications, particularly in light of the absence of regulatory oversight.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM)と金融最適化の整合性に関する倫理的意味を,経済的に有益な結果の優先順位付けを行うモデルであるGreedLlamaのケーススタディを通じて検討する。
GreedLlamaは、道徳的推論タスクにおけるGreedLlamaのパフォーマンスをベースLlama2モデルと比較することにより、関連する傾向を浮き彫りにしている。
曖昧さの低い状況では、GreedLlamaの倫理的判断は、ベースモデルの86.9%に比べて54.4%に低下し、一方、曖昧さの高い状況では、ベースモデルの65.1%に対して47.4%となった。
これらの知見は、LLMにおける単一次元価値アライメントのリスクを強調し、決定が金銭的インセンティブによってのみ引き起こされるものではないことを保証するために、より広範な倫理的価値をAI開発に統合する必要性を強調している。
この研究は、LLMの展開に対するバランスの取れたアプローチを要求し、特に規制の監督が欠如していることを踏まえて、ビジネス応用を意図したモデルに倫理的配慮を組み込むことを提唱している。
関連論文リスト
- Large-scale moral machine experiment on large language models [0.0]
自律運転シナリオにおける51種類の大規模言語モデル(LLM)の道徳的判断を評価する。
プロプライエタリなモデルとオープンソースモデルは100億以上のパラメータを持ち、人間の判断と比較的密接な一致を示した。
しかし、モデル更新は人間の嗜好との整合性を一貫して改善しておらず、多くのLCMは特定の倫理的原則に過度に重点を置いている。
論文 参考訳(メタデータ) (2024-11-11T08:36:49Z) - Deep Bayesian Active Learning for Preference Modeling in Large Language Models [84.817400962262]
本稿では,BAL-PM(Bayesian Active Learner for Preference Modeling)を提案する。
BAL-PMは2つの人気のある人間の嗜好データセットにおいて、好みラベルを33%から68%少なくし、以前のベイズ買収ポリシーを超えている。
我々の実験では、BAL-PMは2つの人気のある人選好データセットにおいて33%から68%の選好ラベルを必要としており、ベイズ買収ポリシーを上回ります。
論文 参考訳(メタデータ) (2024-06-14T13:32:43Z) - How Ethical Should AI Be? How AI Alignment Shapes the Risk Preferences of LLMs [0.0]
本研究では,Large Language Models(LLMs)のリスク嗜好と,それらと人間の倫理基準の整合が,その経済的な意思決定にどのように影響するかを検討する。
LLMと人的価値の整合性、無害性、有用性、誠実性を重視し、それらをリスク回避にシフトしていることが分かりました。
論文 参考訳(メタデータ) (2024-06-03T10:05:25Z) - The Economic Implications of Large Language Model Selection on Earnings and Return on Investment: A Decision Theoretic Model [0.0]
我々は、異なる言語モデルによる金銭的影響を比較するために、決定論的アプローチを用いる。
この研究は、より高価なモデルの優れた精度が、特定の条件下でどのようにしてより大きな投資を正当化できるかを明らかにしている。
この記事では、テクノロジの選択を最適化しようとしている企業のためのフレームワークを提供する。
論文 参考訳(メタデータ) (2024-05-27T20:08:41Z) - Exploring and steering the moral compass of Large Language Models [55.2480439325792]
大規模言語モデル(LLM)は、様々な分野における自動化と意思決定の推進の中心となっている。
本研究は,その道徳的特徴を評価するために,最も先進的なLCMの総合的比較分析を提案する。
論文 参考訳(メタデータ) (2024-05-27T16:49:22Z) - The ART of LLM Refinement: Ask, Refine, and Trust [85.75059530612882]
ART: Ask, Refine, and Trust と呼ばれる改良目標を用いた推論を提案する。
LLMがいつその出力を洗練すべきかを決めるために必要な質問を尋ねる。
自己補充ベースラインよりも+5ポイントの性能向上を達成する。
論文 参考訳(メタデータ) (2023-11-14T07:26:32Z) - Denevil: Towards Deciphering and Navigating the Ethical Values of Large
Language Models via Instruction Learning [36.66806788879868]
大きな言語モデル(LLM)は前例のない突破口をたどったが、彼らの日常生活への統合は非倫理的コンテンツによって社会的リスクを引き起こす可能性がある。
この研究はモラル・ファンデーション理論を利用した倫理的価値を論じている。
論文 参考訳(メタデータ) (2023-10-17T07:42:40Z) - Democratizing LLMs: An Exploration of Cost-Performance Trade-offs in
Self-Refined Open-Source Models [53.859446823312126]
SoTAは7Bから65Bまでのさまざまなサイズのオープンソースモデルを平均して、ベースラインのパフォーマンスから8.2%改善している。
厳密に言えば、Vicuna-7Bのような非常に小さなメモリフットプリントを持つモデルでさえ、全体的な11.74%の改善と、高い創造性、オープンエンドタスクの25.39%の改善を示している。
論文 参考訳(メタデータ) (2023-10-11T15:56:00Z) - SALMON: Self-Alignment with Instructable Reward Models [80.83323636730341]
本稿では,基本言語モデルと人間の監督を最小限に整合させる新しいアプローチ,すなわちSALMONを提案する。
私たちはDromedary-2という名のAIアシスタントを開発しており、コンテキスト内学習には6つの例と31の人間定義原則しかありません。
論文 参考訳(メタデータ) (2023-10-09T17:56:53Z) - Enhancing Financial Sentiment Analysis via Retrieval Augmented Large
Language Models [11.154814189699735]
大規模な言語モデル (LLM) は様々なNLPタスクにおいて優れた性能を示した。
本稿では,金融感情分析のためのLLMフレームワークを提案する。
提案手法の精度は15%から48%向上し,F1得点を得た。
論文 参考訳(メタデータ) (2023-10-06T05:40:23Z) - On the model-based stochastic value gradient for continuous
reinforcement learning [50.085645237597056]
モデルベースエージェントは,サンプル効率と最終報酬の両方の観点から,最先端のモデルフリーエージェントより優れていることを示す。
以上の結果から,モデルに基づく政策評価がより注目に値することが示唆された。
論文 参考訳(メタデータ) (2020-08-28T17:58:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。