論文の概要: The Economic Implications of Large Language Model Selection on Earnings and Return on Investment: A Decision Theoretic Model
- arxiv url: http://arxiv.org/abs/2405.17637v1
- Date: Mon, 27 May 2024 20:08:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 23:11:29.094857
- Title: The Economic Implications of Large Language Model Selection on Earnings and Return on Investment: A Decision Theoretic Model
- Title(参考訳): 大規模言語モデル選択の経済的意味と投資への回帰:決定理論モデル
- Authors: Geraldo Xexéo, Filipe Braida, Marcus Parreiras, Paulo Xavier,
- Abstract要約: 我々は、異なる言語モデルによる金銭的影響を比較するために、決定論的アプローチを用いる。
この研究は、より高価なモデルの優れた精度が、特定の条件下でどのようにしてより大きな投資を正当化できるかを明らかにしている。
この記事では、テクノロジの選択を最適化しようとしている企業のためのフレームワークを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Selecting language models in business contexts requires a careful analysis of the final financial benefits of the investment. However, the emphasis of academia and industry analysis of LLM is solely on performance. This work introduces a framework to evaluate LLMs, focusing on the earnings and return on investment aspects that should be taken into account in business decision making. We use a decision-theoretic approach to compare the financial impact of different LLMs, considering variables such as the cost per token, the probability of success in the specific task, and the gain and losses associated with LLMs use. The study reveals how the superior accuracy of more expensive models can, under certain conditions, justify a greater investment through more significant earnings but not necessarily a larger RoI. This article provides a framework for companies looking to optimize their technology choices, ensuring that investment in cutting-edge technology aligns with strategic financial objectives. In addition, we discuss how changes in operational variables influence the economics of using LLMs, offering practical insights for enterprise settings, finding that the predicted gain and loss and the different probabilities of success and failure are the variables that most impact the sensitivity of the models.
- Abstract(参考訳): ビジネスコンテキストにおける言語モデルの選択には、投資の最終的な経済的利益を慎重に分析する必要がある。
しかし、LLMの学術的重要性と産業分析は、単に性能にのみ焦点が当てられている。
この研究は、LCMを評価するためのフレームワークを導入し、収益に焦点を当て、ビジネス意思決定において考慮すべき投資面を返却する。
我々は、トークン当たりのコスト、特定のタスクの成功確率、LLMの使用に伴う利得と損失などの変数を考慮して、異なるLCMの金銭的影響を比較するために決定論的アプローチを用いる。
この研究は、より高価なモデルの優れた精度が、特定の条件下では、より重要な利益によってより大きな投資を正当化するが、必ずしも大きなRoIを正当化するとは限らないことを明らかにしている。
この記事では、最先端技術への投資が戦略的金融目標と一致していることを保証するため、テクノロジの選択を最適化したい企業のためのフレームワークを提供する。
さらに、運用変数の変化がLLMの経済性にどのように影響するかを論じ、企業環境に対する実践的な洞察を提供し、予測される利得と損失、そして成功と失敗の確率がモデルの感度に最も影響を与える変数であることを見出した。
関連論文リスト
- EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - Financial Statement Analysis with Large Language Models [0.0]
我々はGPT4に標準化された匿名の財務文書を提供し、モデルを解析するように指示する。
このモデルでは、財務アナリストが収益の変化を予測できる能力を上回っている。
GPTの予測に基づく貿易戦略は、他のモデルに基づく戦略よりもシャープ比とアルファ率が高い。
論文 参考訳(メタデータ) (2024-07-25T08:36:58Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
LLMによって駆動される、StockAgentと呼ばれるマルチエージェントAIシステムを開発した。
StockAgentを使えば、ユーザーはさまざまな外部要因が投資家取引に与える影響を評価することができる。
AIエージェントに基づく既存のトレーディングシミュレーションシステムに存在するテストセットのリーク問題を回避する。
論文 参考訳(メタデータ) (2024-07-15T06:49:30Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
大規模言語モデル(LLM)は、システムの異なる部分への介入の下で因果効果を推定することができる。
LLMが介入に応じてデータ生成プロセスの知識を正確に更新できるかどうかを実証分析して評価する。
我々は、様々な因果グラフ(例えば、コンバウンディング、仲介)と変数タイプにまたがるベンチマークを作成し、介入に基づく推論の研究を可能にする。
論文 参考訳(メタデータ) (2024-04-08T14:15:56Z) - Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization [49.396692286192206]
本研究では,ESG状態と目的を取り入れたポートフォリオ最適化のための深層強化学習について検討する。
以上の結果から,ポートフォリオアロケーションに対する平均分散アプローチに対して,深層強化学習政策が競争力を発揮する可能性が示唆された。
論文 参考訳(メタデータ) (2024-03-25T12:04:03Z) - A Comparative Analysis of Fine-Tuned LLMs and Few-Shot Learning of LLMs
for Financial Sentiment Analysis [0.0]
我々は、財務分野のデータセット上で、コンテキスト内学習と微調整LDMの2つのアプローチを採用する。
以上の結果から, 微調整された小型LCMは, 最先端の微調整LDMに匹敵する性能を達成できることが示唆された。
文脈内学習におけるショット数が増加すると、財務領域の感情分析のパフォーマンスが向上することはない。
論文 参考訳(メタデータ) (2023-12-14T08:13:28Z) - Benchmarking Large Language Model Volatility [4.660822118740283]
大規模言語モデル(LLM)からの非決定論的アウトプットの影響は,財務テキスト理解タスクにおいて十分に検討されていない。
ニュース感情分析を通じて、米国株式市場への投資に関する説得力あるケーススタディを通じて、文レベルの感情分類結果のかなりの変動を明らかにする。
これらの不確実性は下流のカスケードとなり、ポートフォリオの構築とリターンに大きな変化をもたらした。
論文 参考訳(メタデータ) (2023-11-26T03:54:03Z) - Enhancing Financial Sentiment Analysis via Retrieval Augmented Large
Language Models [11.154814189699735]
大規模な言語モデル (LLM) は様々なNLPタスクにおいて優れた性能を示した。
本稿では,金融感情分析のためのLLMフレームワークを提案する。
提案手法の精度は15%から48%向上し,F1得点を得た。
論文 参考訳(メタデータ) (2023-10-06T05:40:23Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
我々は、業界中立化と市場中立化モジュールを明確な財務見識をもって取り入れた、新しい深層多要素モデルを開発する。
実世界の株式市場データによるテストは、我々の深層多要素モデルの有効性を示している。
論文 参考訳(メタデータ) (2022-10-22T14:47:11Z) - A Comprehensive Review on Summarizing Financial News Using Deep Learning [8.401473551081747]
自然言語処理技術は通常、そのような大量のデータを扱うために使われ、そこから貴重な情報を得るのに使用される。
本研究では,BoW,TF-IDF,Word2Vec,BERT,GloVe,FastTextなどの埋め込み技術を用いて,RNNやLSTMなどのディープラーニングモデルに入力する。
ディープリーミングは、望まれる結果を得るか、最先端技術よりも高い精度を達成するために適用されることが期待された。
論文 参考訳(メタデータ) (2021-09-21T12:00:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。