論文の概要: Multimodal hierarchical multi-task deep learning framework for jointly predicting and explaining Alzheimer disease progression
- arxiv url: http://arxiv.org/abs/2404.03208v1
- Date: Thu, 4 Apr 2024 05:30:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 15:43:35.628192
- Title: Multimodal hierarchical multi-task deep learning framework for jointly predicting and explaining Alzheimer disease progression
- Title(参考訳): アルツハイマー病の進行を共同で予測・説明するためのマルチモーダル階層型マルチタスクディープラーニングフレームワーク
- Authors: Sayantan Kumar, Sean Yu, Thomas Kannampallil, Andrew Michelson, Aristeidis Sotiras, Philip Payne,
- Abstract要約: 最終的にアルツハイマー病(AD)に進展する軽度認知障害(MCI)の早期発見は困難である。
訪問軌跡の各時点における疾患進行のリスクをモニタリングするマルチモーダル階層型マルチタスク学習手法を提案する。
我々の階層モデルでは、各時点における神経心理学的複合認知機能のスコアを補助的タスクとして予測し、予測されたスコアを各時点における予測スコアを用いて、将来の病気のリスクを予測する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Early identification of Mild Cognitive Impairment (MCI) subjects who will eventually progress to Alzheimer Disease (AD) is challenging. Existing deep learning models are mostly single-modality single-task models predicting risk of disease progression at a fixed timepoint. We proposed a multimodal hierarchical multi-task learning approach which can monitor the risk of disease progression at each timepoint of the visit trajectory. Longitudinal visit data from multiple modalities (MRI, cognition, and clinical data) were collected from MCI individuals of the Alzheimer Disease Neuroimaging Initiative (ADNI) dataset. Our hierarchical model predicted at every timepoint a set of neuropsychological composite cognitive function scores as auxiliary tasks and used the forecasted scores at every timepoint to predict the future risk of disease. Relevance weights for each composite function provided explanations about potential factors for disease progression. Our proposed model performed better than state-of-the-art baselines in predicting AD progression risk and the composite scores. Ablation study on the number of modalities demonstrated that imaging and cognition data contributed most towards the outcome. Model explanations at each timepoint can inform clinicians 6 months in advance the potential cognitive function decline that can lead to progression to AD in future. Our model monitored their risk of AD progression every 6 months throughout the visit trajectory of individuals. The hierarchical learning of auxiliary tasks allowed better optimization and allowed longitudinal explanations for the outcome. Our framework is flexible with the number of input modalities and the selection of auxiliary tasks and hence can be generalized to other clinical problems too.
- Abstract(参考訳): 最終的にアルツハイマー病(AD)に進展する軽度認知障害(MCI)の早期発見は困難である。
既存のディープラーニングモデルは、主に単一モードの単一タスクモデルであり、固定された時点において病気の進行のリスクを予測する。
訪問軌跡の各時点における疾患進行のリスクをモニタリングするマルチモーダル階層型マルチタスク学習手法を提案する。
アルツハイマー病神経画像イニシアチブ (ADNI) データセットのMCI個人から, マルチモーダル性 (MRI, 認知, 臨床データ) の経時的訪問データを収集した。
我々の階層モデルでは、各時点における神経心理学的複合認知機能のスコアを補助的タスクとして予測し、予測されたスコアを各時点における予測スコアを用いて、将来の病気のリスクを予測する。
各複合関数の関連重みは、疾患進行の潜在的要因についての説明を与えた。
提案手法は,AD進行リスクと複合スコアを予測する上で,最先端のベースラインよりも優れた性能を示した。
モダリティの数に関するアブレーション研究は、画像と認識データが結果に最も寄与していることを示した。
各時点におけるモデル説明は、将来ADに進展する可能性のある認知機能の低下について、臨床医に6ヶ月前に通知することができる。
来訪後6ヶ月毎にAD進行のリスクをモニターした。
補助的なタスクの階層的な学習はより良い最適化を可能にし、結果の縦断的な説明を可能にした。
本フレームワークは,入力モダリティの数や補助的タスクの選択に柔軟であるため,他の臨床問題にも一般化できる。
関連論文リスト
- Enhancing End Stage Renal Disease Outcome Prediction: A Multi-Sourced Data-Driven Approach [7.212939068975618]
10,326人のCKD患者のデータを利用して,2009年から2018年までの臨床とクレーム情報を組み合わせた。
24ヶ月の観測窓は早期検出と予測精度のバランスをとるのに最適であると同定された。
2021年のeGFR方程式は予測精度を改善し、特にアフリカ系アメリカ人の偏見を低減した。
論文 参考訳(メタデータ) (2024-10-02T03:21:01Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - Mortality Prediction with Adaptive Feature Importance Recalibration for
Peritoneal Dialysis Patients: a deep-learning-based study on a real-world
longitudinal follow-up dataset [19.7915762858399]
終末期腎疾患(ESRD)に対する腹膜透析(PD)は最も広く用いられている生命維持療法の1つである
本稿では,リアルタイム,個別化,解釈可能な死亡予測モデル - AICare のためのディープラーニングモデルを開発することを目的とする。
本研究は656 PD患者13,091 人の臨床経過と人口統計データを収集した。
論文 参考訳(メタデータ) (2023-01-17T13:17:54Z) - AD-BERT: Using Pre-trained contextualized embeddings to Predict the
Progression from Mild Cognitive Impairment to Alzheimer's Disease [14.59521645987661]
本研究では,変換器(BERT)モデルから事前学習した双方向表現に基づくディープラーニングフレームワークを開発する。
軽度認知障害(MCI)からアルツハイマー病(AD)への進行リスクを非構造的臨床ノートを用いて予測した。
論文 参考訳(メタデータ) (2022-11-07T04:05:46Z) - Comparison of single and multitask learning for predicting cognitive
decline based on MRI data [0.41998444721319217]
アルツハイマー病評価尺度(英: Alzheimer's Disease Assessment Scale-Cognitive subscale、ADAS-Cog)は、神経心理学のツールである。
ADAS-Cogスコアの変化の予測は、認知症および無リスク集団のタイミング治療介入に役立つ可能性がある。
予測モデルを学習するための推奨方法は、単一タスク正規化線形回帰である。
論文 参考訳(メタデータ) (2021-09-21T15:46:42Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
本稿では,患者の予後と治療反応を予測するための統合型深層学習手法を提案する。
我々は,マルチモーダル非同期時系列分類タスクとして,確率モデリングを定式化する。
我々の予測モデルは、長期生存の観点から、低リスク、高リスクの患者をさらに階層化する可能性がある。
論文 参考訳(メタデータ) (2020-10-08T15:30:17Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z) - Deep Recurrent Model for Individualized Prediction of Alzheimer's
Disease Progression [4.034948808542701]
アルツハイマー病(Alzheimer's disease, AD)は認知症の主要な原因の一つであり、数年間の進行が遅いことが特徴である。
本稿では,MRIバイオマーカーの表現型測定と臨床状態の軌跡を予測できる新しい計算フレームワークを提案する。
論文 参考訳(メタデータ) (2020-05-06T08:08:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。